當前位置: 海洋油氣與水合物研究所
王鍇
作者: 發布者:趙小明 發布時間:2024-06-28 訪問次數:9998

職稱:副教授

單位:海洋油氣與水合物研究所

最高學曆/學位:博士研究生

學科:海洋油氣工程學科,石油與天然氣工程

所學專業:

電子郵箱:wangkai@upc.edu.cn;wangkai512126@126.com

聯係電話:1315622869

地址郵編:山東省青島市經濟技術開發區長江西路66號,必威app精裝版客服 ,海洋油氣工程係,266580

  • 個人主頁
  • 學習與工作經曆
    [1] 2016.7-至今,中國石油大學(華東),講師,副教授
    [2] 2018.5-2019.5,University of Calgary,博士後
    [3] 2011.9-2016.7,北京師範大學,博士
    [4] 2007.9-2011.7,華北電力大學,學士
  • 研究方向
    [1] 海洋油氣工程信息與智能技術
    [2] 海洋油氣井完整性監測及智能化
    [3] 含固體顆粒多相流測量技術



  • 招生方向
  • 主講課程
    [1] 《現代海洋油氣工程》
    [2] 《海洋工程作業安全》
    [3] 《海洋油氣技術進展》
    [4] 《深水油氣工程理論與技術進展》
    [5] 《井筒安全檢測》



  • 學術兼職
    [1] 國家自然科學基金函評人(冶金與礦業、海洋工程)
    [2] 教學部學位中心論文網評人
    [3] 國家留學基金委公派留學項目網評人
    [4] 北京市自然基金函評人
    [5] 研究生學位論文網評人
    [6] 山東省科技專家庫技術研發專家
    [7] 青島市科技專家庫專家
    [8] CNKI評審專家庫專家
    [9] 期刊主題編輯:《Energies》(SCI)、《Geosciences》(SCI)、《Minerals》(SCI)、《Applied Sciences-Basel》、《Geotechnics》
    [10] 期刊青年編委:《Deep Underground Science and Engineering》(EI)、《機械科學與技術》(中文核心)、《油氣儲運》(中文核心)
    [11] 《Mechanical Systems and Signal Processing》、《SPE Journal》、《IEEE Transactions on Instrumentation & Measurement》、《Powder Technology》、《Measurement》、《Journal of Natural Gas Science and Engineering》、《Journal of Petroleum Science and Engineering》、《Applied acoustic》、《Ocean Engineering》、《Biomaterials》、《Physics of fluids》、《Computer Systems Science and Engineering》、《Flow Measurement and Instrument》、《IEEE Access》、《Journal of Petroleum Exploration and Production Technology》、《Intelligent Automation & Soft Computing》、《Shock and vibration》、《Journal of Dispersion Science and Technology》等20餘種SCI期刊審稿人。
  • 指導研究生
    [1] 博士生(副導師):王剛(中國石油工程設計大賽二等獎)、李禕宸(中國研究生能源裝備大賽二等獎)
    [2] 碩士生(24級):王子彪(優秀本科畢業設計)、王誌遠
    [3] 碩士生(23級):田佳棋(優秀本科畢業設計、中國石油工程設計大賽三等獎)、魯佳琦
    [4] 碩士生(22級):常子昂(研究生國家獎學金、優秀本科畢業設計、中國研究生能源裝備大賽二等獎、中國石油工程設計大賽三等獎)
    [5] 碩士生(20級):胡軼男(研究生國家獎學金)
    [6] 碩士生(協助):張家林(研究生國家獎學金)、馮凱、杜佳誠、穆文軍、劉冰等
  • 承擔科研課題
    [1] 水下采油樹完整性管理及出砂探測與衝蝕設計與分析,技術開發,2023-2025
    [2] 微砂粒碰撞輸油管壁瞬態振動響應機理與含砂量表征方法,重點實驗室開放基金,2024-2025
    [3] 深水油氣及可燃冰工況鈦合金油套管管柱設計及應用研究,山東省重大創新工程,2023-2025
    [4] 單筒雙井表層套管下入掛碰模擬研究,技術服務,2024-2024
    [5] 海上中深層油藏高效開采技術,技術服務,2023-2023
    [6] 數字化轉型關鍵技術,技術服務,2023-2023
    [7] 基於多頻碰撞響應驅動的深水氣井出砂定量識別方法研究,國家自然基金,2022-2024
    [8] 深水氣井出砂誘發多頻碰撞響應機理及砂粒徑反演方法,山東省自然基金,2022-2024
    [9] 鑽頭振動信號傳收與信噪處理方法及樣機開發,技術服務,2022-2024
    [10] 複雜井筒多相流動安全保障技術研發,廣東省自然資源廳,2021-2023
    [11] 基於流量監測的溢漏早期發現係統,技術開發,2021-2022
    [12] 一種非植入式稠油油井出砂量監測係統及其方法,技術開發,2019-2024
    [13] 生產井出砂在線監測係統研究,技術開發,2018-2020
    [14] 深水鑽完井工程風險預警及管控,國家重點基礎研究發展計劃(973計劃),2015-2019
    [15] 樂東氣田A9/A10調整井防碰地麵監測及預警係統服務,技術服務,2018-2018
    [16] 基於液固兩相流動撞擊管壁誘發振動信號的油井出砂特性識別研究,山東省自然基金,2017-2019
    [17] 油井出砂撞擊管壁激發振動信號特性表征與識別研究,中央高校基本科研業務專項,2017-2019
    [18] 深水氣田鑽井期間水合物堵塞機理及預防方法研究,中央高校基本科研業務專項,2017-2019
    [19] 基於振動方法的氣-砂兩相流中固相檢測研究,中國石油大學(華東),2017-2019
    [20] 恩平23-1油田群防碰預警技術服務,技術服務,2016-2017
    [21] 海上叢式井防碰監測先導項目,技術開發,2015-2015
    [22] 海上稠油油田適度出砂地麵監測技術及裝置研究,國家科技重大專項,2011-2015
    [23] 海上油田叢式井多平台鑽井趨近井筒監測方法,國家科技重大專項,2011-2015
    [24] 加密井網防碰工程技術示範,國家科技重大專項,2011-2015
  • 獲獎情況
    [1] 2024年,凡科評審質量研究院,研究生學位論文優秀評審專家
    [2] 2023年,中國發明協會一等獎,海上油氣井筒振動監測預警技術創新及裝備研發,1/6
    [3] 2023年,中國石油大學(華東),師德考核優秀
    [4] 2023年,中國石油大學(華東),優秀本科畢業設計指導教師
    [5] 2022年,中國石油大學(華東),優秀工會幹部
    [6] 2022年,中國石油大學(華東),優秀本科畢業設計指導教師
    [7] 2021年,中國石油大學(華東),優秀工會幹部
    [8] 2021年,中國石油大學(華東),師德考核優秀
    [9] 2021年,中國石油大學(華東),年度考核優秀
    [10] 2021年,中國石油工程設計大賽,優秀指導教師
    [11] 2020年,中國石油大學(華東),優秀工會會員
    [12] 2020年,Betway88必威 ,年度貢獻獎
    [13] 2019年,中國石油大學(華東),年度考核優秀
    [14] 2018 年,中國石油和化學工業聯合會,科技進步二等獎
    [15] 2017 年,北京師範大學,優秀博士學位論文
    [16] 2017 年,國家留學基金委,創新型人才國際合作培養博士後獎學金
    [17] 2017 年,中國石油大學(華東),青年教師上崗培訓優秀
  • 榮譽稱號
  • 著作
    [1] 專業必修課教材《海洋油氣鑽井工程》,中國石油大學出版社,2022年,參與.
  • 論文
    部分SCI收錄論文:
    [1] Measuring solid particles in sand-carrying gas flow using multiscale vibration response statistics and deep learning algorithms, Mechanical Systems and Signal Processing, 209 (2024) 111103.
    [2] Sand particle characterization and identification in annular multiphase flow using an intelligent method, Physics of Fluids, 36 (2024) 013306.
    [3] Analysis of the particle characteristics of solid-liquid turbulent flow by triaxial vibration statistic and machine learning methods, Powder Technology, 2024, 436:119464.
    [4] Solid particle size characterization by a high-frequency collision response in pneumatic particulate flow, Particuology, 86 (2024) 39-54.
    [5] A sand particle characterization method for water-bearing high-production gas wells based on a multifrequency collision response, Natural Gas Industry B, 11 (2024)154-169.
    [6] Triaxial vibration response performance characteristics of solid particles in elbows under slurry flow conditions, IEEE Transactions on Instrumentation & Measurement, 72(2023)1004215.
    [7] The fusion of deep learning and acoustic emission response methods for identifying solid particles in annular multiphase flows, Geoenergy Science and Engineering, 225 (2023) 211685.
    [8] Experimentally Investigating Sand Particle Characteristics Under Annular Multiphase Flow Conditions Using a Triaxial Vibration Method, SPE Journal, 28 (2023) 697-714.
    [9] Tripability Analysis of Casing Strings in Directional Wells Using the Continuous Beam-Col umn and Buckling Theory, Geofluids, (2022) 1-15.
    [10] Multi-scale characterization and identification of dilute solid particles impacting walls within an oil-conveying flow with an experimental evaluation by dual vibration sensors, Chemical Engineering Journal, 416 (2021) 129173.
    [11] Multi-frequency characterization of particle-wall interactions in a solid-liquid dispersion conveying pipe flow using a non-intrusive vibration detection method, Chemical Engineering Journal, 413 (2021) 127526.
    [12] A leakage particle–wall impingement based vibro-acoustic characterization of the leaked sand–gas pipe flow, Particuology, 55 (2021) 84-93.
    [13] Experimental Investigations of Offshore Sand Production Monitoring Based on the Analysis of Vibration in Response to Weak Shocks, Geofluids, (2021) 1-17.
    [14] Experimental evaluation of rock disintegration detection in drilling by a new acoustic sensor method, Journal of Petroleum Science and Engineering, 195 (2020) 107853.
    [15] Study of the optical properties of a square polycapillary slice, Optics Communications, 430 (2019) 139-142.
    [16] An investigation of the detection of acoustic sand signals from the flow of solid particles in pipelines, Chemical Engineering Research and Design, 144 (2019) 272-284.
    [17] Identification and characterization of solids in sand-water two-phase flows via vibration multi-sensor approaches, Advanced Powder Technology, 30 (2019) 2240-2250.
    [18] Vibration multisensor fusion method for the identification and characterization of sand particles in dispersions of oil in water flow, Powder Technology, 352 (2019) 227-239.
    [19] Non-intrusive characterization of sand particles dispersed in gas–water bubbly flow using straight and bent pipes with vibration sensing, Powder Technology, 344 (2019) 598-610.
    [20] Vibration sensor approaches for experimental studies of sand detection carried in gas and droplets, Powder Technology, 352 (2019) 386-396.
    [21] Vibration and acoustic signal characteristics of solid particles carried in sand-water two-phase flows, Powder Technology, 345 (2019) 159-168.
    [22] Experimental evaluation of sand particle identification in oil–water–gas multiphase flows based on vibration signal analysis, Chemical Engineering Research and Design, 151 (2019) 79-90.
    [23] Vibration sensor method for the identification of solid particle leakage from gas pipe flow based on particle-wall interaction, Powder Technology, (2019).
    [24] Simulation of X-ray transmission and spatial imaging of polycapillary lenses with square cross-sections, Optics Communications, 420 (2018) 205-210.
    [25] Analysis of signal characteristics from rock drilling based on vibration and acoustic sensor approaches, Applied Acoustics, 140 (2018) 275-282.
    [26] Investigation of anodic plasma electrolytic carbonitriding on medium carbon steel, Surface and Coatings Technology, 313 (2017) 288-293.
    [27] Acoustic sensor approaches for sand detection in sand–water two-phase flows, Powder Technology, 320 (2017) 739-747.
    [28] The surface morphology analysis based on progressive approximation method using confocal three-dimensional micro X-ray fluorescence, Spectrochimica Acta Part B: Atomic Spectroscopy, 122 (2016) 127-131.
    [29] The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis, Applied Physics A, 122 (2016).
    [30] Combining depth analysis with surface morphology analysis to analyse the prehistoric painted pottery from Majiayao Culture by confocal 3D-XRF, Applied Physics A, 122 (2016).
    [31] Vibration sensor approaches for the sand detection in gas–sand two phases flow, Powder Technology, 288 (2016) 221-227.
    [32] Property of slice square polycapillary x-ray optics, Chinese Physics B, 25 (2016) 024102.
    [33] A new background subtraction method for energy dispersive X-ray fluorescence spectra using a cubic spline interpolation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 775 (2015) 12-14.
    [34] Vibration Sensor Approaches for the Monitoring of Sand Production in Bohai Bay, Shock and Vibration, 2015 (2015) 1-6.
    [35] Vibration sensor approaches for sand detection in oil–water–sand multiphase flow, Powder Technology, 276 (2015) 183-192.
    [36] Numerical Simulation of Polycapillary X-ray Lens, Acta Optica Sinica, 35 (2015) 0234001.
    [37] Simulation of transmitted X-rays in a polycapillary X-ray lens, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 795 (2015) 186-191.
  • 專利
    發明專利(第一發明人):
    [1] 基於多傳感器的管道含砂量檢測裝置,ZL202010103895.7,2022.10.21.
    [2] 氣井出砂檢測實驗裝置,ZL111257177A,2022.06.07
    [3] 油氣管道出砂量監測實驗裝置及監測方法,ZL2017105795460,2020.07.03
    [4] 深水油氣井水下出砂監測裝置及監測方法,CN111305814A,2020.06.19
    [5] 一種用於采油井的套管漏點深度檢測方法和裝置, ZL201611135961.9,2019.11.26.
    [6] 一種叢式井井間距離測量方法, ZL201710674338.9,2019.05.17.
    [7] 一種非植入式稠油油井出砂量監測係統及其方法, ZL201610047626.7,2018.12.28.
    [8] 多相流管道泥砂顆粒含量與衝蝕監測預警裝置及方法,CN 202211095966.9, 2022.09.08.
    [9] 水下井口輸氣管道砂粒粒徑分布檢測係統及方法, CN202211062146.X,2022.09.01.
    [10] —種氣井出砂信息智能識別和預測方法,CN202311153876.5, 2023.09.08.


    軟件著作權:
    [1] 氣-液兩相流輸運管道泥砂顆粒含量檢測軟件,2020SR1793580,2020.
    [2] 顆粒高速衝擊平板誘發的振動響應監測軟件,2020SR1793579,2020.
    [3] 生產井出砂在線檢測軟件,2020SR0168730,2019.
    [4] 海上油田適度出砂監測軟件,2015SR194011,2015.
    [5] 海上油田從式井網整體加密調整多平台鑽井趨近井筒監測軟件,2015SR099291,2015.
    [6] 深水氣井出砂監測軟件,2023R11L084293, 2023
    [7] 複合材料儲氫瓶結構完整性與安全實時監測軟件,2024SR0077209,2024
    [8] 微型芯片封裝體缺陷智能監測與識別軟件,2024SR0077228,2024
    [9] 自適應熱位移重載調節平台控製與監測軟件,2024SR0077185,2024

  • 學術交流
    [1] Non-intrusive Identification of Offshore Sand Production in Water-gas Pipe Flow Via Acoustic Sensing Method [C]. The 29th International Ocean and Polar Engineering Conference, 美國,2019.
    [2] Non-intrusive Measurement of Sand Production in Boyhai Bay Using Vibration Sensor Method[C]. SPE Europe featured at 79th EAGE Conference and Exhibition, 12-15 June, 法國,2017.
    [3] Non-Intrusive Measurement of Offshore Sand Production Using Vibration Sensor Method and Its Laboratory Evaluation[C]. The 27th International Ocean and Polar Engineering Conference, 25-30 June, San Francisco, California,美國,2017.
    [4] Monitoring Solid Phase in Oil-Water-Sand Multiphase Flow in Impact Parts Based on Acoustic Emission Sensor Technology[C]. ICAET, 16-18December, Incheon, 韓國,2016.
  • 個人風采
    招生方向(學術型、專業型):
    (1) 海洋油氣工程理論與技術
    (2) 油氣工程信息與智能技術
    (3) 油氣井工程理論與技術


    熱烈歡迎:
    海洋油氣工程、石油工程、油氣儲運工程、機械類、計算機類、自動化類、電子信息等理工科專業本科生加入本團隊!