論文
[1] Wang, Z., Tong, S., Wang, C., Zhang, J., Fu, W., & Sun, B. (2020). Hydrate deposition prediction model for deep-water gas wells under shut-in conditions. Fuel, 275, 117944.
[2] Wang, Z., Liu, H., Zhang, Z., Sun, B., Zhang, J., & Lou, W. (2020). Research on the effects of liquid viscosity on droplet size in vertical gas–liquid annular flows. Chemical Engineering Science, 115621.
[3] Wang Z , Lou W , Sun B , et al. A model for predicting bubble velocity in yield stress fluid at low Reynolds number[J]. Chemical Engineering Science, 2019, 201:325-338.
[4] Wang Z, Yu J, Zhang J, et al. Improved thermal model considering hydrate formation and deposition in gas-dominated systems with free water[J]. Fuel, 2019, 236: 870-879.
[5] Wang Z, Zhao Y, Zhang J, et al. Quantitatively Assessing Hydrate-Blockage Development During Deepwater-Gas-Well Testing[J]. SPE Journal, 2018, 23(04): 1,166-1,183.
[6] Wang Z, Liao Y, Zhang W, et al. Coupled temperature field model of gas-hydrate formation for thermal fluid fracturing[J]. Applied Thermal Engineering, 2018, 133: 160-169.
[7] Wang Z, Zhao Y, Zhang J, et al. Flow assurance during deepwater gas well testing: Hydrate blockage prediction and prevention[J]. Journal of Petroleum Science and Engineering, 2018, 163: 211-216.
[8] Wang Z, Zhang J, Sun B, et al. A new hydrate deposition prediction model for gas-dominated systems with free water[J]. Chemical Engineering Science, 2017, 163: 145-154.
[9] Wang Z, Zhang J, Chen L, et al. Modeling of hydrate layer growth in horizontal gas-dominated pipelines with free water[J]. Journal of Natural Gas Science & Engineering, 2017, 50:364–373.
[10] Wang Z, Sun B, Sun X. Calculation of temperature in fracture for carbon dioxide fracturing[J]. SPE Journal, 2016, 21(05): 1491-1500.
[11] Wang Z, Zhao Y, Sun B, et al. Modeling of hydrate blockage in gas-dominated systems[J]. Energy & Fuels, 2016, 30(6): 4653-4666.
[12] Wang Z, Sun B, Sun X, et al. Phase state variations for supercritical carbon dioxide drilling[J]. Greenhouse Gases: Science and Technology, 2016, 6(1): 83-93.
[13] Wang Z, Sun B, Yan L. Improved density correlation for supercritical CO2[J]. Chemical Engineering & Technology, 2015, 38(1): 75-84.
[14] WANG Z, SUN B, WANG X, et al. Prediction of natural gas hydrate formation region in wellbore during deep-water gas well testing[J]. Journal of Hydrodynamics, Ser. B, 2014, 26(4): 568-576.
[15] Wang Z, Sun B, Wang J, et al. Experimental study on the friction coefficient of supercritical carbon dioxide in pipes[J]. International Journal of Greenhouse Gas Control, 2014, 25(6): 151-161.
[16] WANG Z, SUN B. Deepwater gas kick simulation with consideration of the gas hydrate phase transition[J]. Journal of Hydrodynamics, Ser. B, 2014, 26(1): 94-103.
[17] Wang Z, Sun B, Ke K. Pre-Spud Mud Loss Flow Rate in Steeply Folded Structures[J]. Oil & Gas Science & Technology, 2013, 69(7):1269-1281.
[18] Wang Z, Sun B. Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition[J]. Petroleum Science, 2009, 6(1): 57-63.
[19] He, H., Sun, B, Wang, Z, Liu, Y., & Sun, X. (2020). A constitutive model for predicting the solubility of gases in water at high temperature and pressure. Journal of Petroleum Science and Engineering, 107337.
[20] Zhang, J., Wang, Z., Duan, W., Fu, W., Sun, B., Sun, J., & Tong, S. (2020). Real-Time Estimation and Management of Hydrate Plugging Risk During Deepwater Gas Well Testing. SPE Journal.
[21] Sun, B., Zhang, Z., Wang, Z., Pan, S., Wang, Z., & Chen, W. (2020). Parameter Prediction Method for Submarine Cuttings Piles in Offshore Drilling. SPE Journal.
[22] Fang, T., Zhang, Y., Yan, Y., Wang, Z., & Zhang, J. (2020). Molecular insight into the oil extraction and transport in CO2 flooding with reservoir depressurization. International Journal of Heat and Mass Transfer, 148, 119051.
[23] Chenwei Liu, Zhiyuan Wang, Jinlin Tian, et al. (2020). Fundamental investigation of the adhesion strength between cyclopentane hydrate deposition and solid surface materials. Chemical Engineering Science, 217, 115524.
[24] Deng, X., Pan, S., Zhang, J., Wang, Z., & Jiang, Z. (2020). Numerical investigation on abnormally elevated pressure in laboratory-scale porous media caused by depressurized hydrate dissociation. Fuel, 271, 117679.
[25] Lou, W., Wang, Z., Pan, S., Sun, B., Zhang, J., & Chen, W. (2020). Prediction model and energy dissipation analysis of Taylor bubble rise velocity in yield stress fluid. Chemical Engineering Journal, 125261.
[26] Liao, Y., Sun, X., Sun, B., Wang, Z., Zhang, J., & Lou, W. (2020). Wellhead backpressure control strategies and outflow response characteristics for gas kick during managed pressure drilling. Journal of Natural Gas Science and Engineering, 75, 103164.
[27] Fu, W., Wang, Z., Zhang, J., & Sun, B. (2020). Methane hydrate formation in a water-continuous vertical flow loop with xanthan gum. Fuel, 265, 116963.
[28] Deng, X., Feng, J., Pan, S., Wang, Z., Zhang, J., & Chen, W. (2020). An improved model for the migration of fluids caused by hydrate dissociation in porous media. Journal of Petroleum Science and Engineering, 106876.
[29] Sun, B., Pan, S., Zhang, J., Zhao, X., Zhao, Y., & Wang, Z. (2019). A Dynamic Model for Predicting the Geometry of Bubble Entrapped in Yield Stress Fluid. Chemical Engineering Journal, 123569.
[30] Zhang, L., Wang, Z., Du, K., Xiao, B., & Chen, W. (2019). A new analytical model of wellbore strengthening for fracture network loss of drilling fluid considering fracture roughness. Journal of Natural Gas Science and Engineering, 103093.
[31] Wang J, Sun B, Chen W, et al. Calculation model of unsteady temperature–pressure fields in wellbores and fractures of supercritical CO2 fracturing[J]. Fuel, 2019, 253: 1168-1183.
[32] Sun B, Fu W, Wang Z, et al. Characterizing the rheology of methane hydrate slurry in a horizontal water-continuous system[J]. SPE Journal, 2019.
[33] Sun X, Liao Y, Wang Z, et al. Geothermal exploitation by circulating supercritical CO2 in a closed horizontal wellbore[J]. Fuel, 2019, 254: 115566.
[34] Fu W, Wang Z, Zhang J, et al. Investigation of rheological properties of methane hydrate slurry with carboxmethylcellulose[J]. Journal of Petroleum Science and Engineering, 2019: 106504.
[35] Liao Y, Sun X, Sun B, et al. Transient gas–liquid–solid flow model with heat and mass transfer for hydrate reservoir drilling[J]. International Journal of Heat and Mass Transfer, 2019, 141: 476-486.
[36] Liao Y, Sun X, Sun B, et al. Coupled thermal model for geothermal exploitation via recycling of supercritical CO2 in a fracture–wells system[J]. Applied Thermal Engineering, 2019: 113890. [19] Zhang J, Wang Z, Liu S, et al. Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety[J]. Applied Energy, 2019, 253: 113521.
[37] Zhang J, Wang Z, Sun B, et al. An integrated prediction model of hydrate blockage formation in deep-water gas wells[J]. International Journal of Heat and Mass Transfer, 2019, 140: 187-202.
[38] Deng X, Pan S, Wang Z, et al. Application of the Darcy-Stefan model to investigate the thawing subsidence around the wellbore in the permafrost region[J]. Applied Thermal Engineering, 2019, 156: 392-401.
[39] Fu W, Wang Z, Yue X, et al. Experimental Study of Methane Hydrate Formation in Water-continuous Flow Loop[J]. Energy & Fuels, 2019.
[40] Fu W, Wang Z, Duan W, et al. Characterizing methane hydrate formation in the non-Newtonian fluid flowing system[J]. Fuel, 2019, 253: 474-487.
[41] Sun B, Yang C, Wang Z, et al. Methodology for pressure drop of bubbly flow based on energy dissipation[J]. Journal of Petroleum Science and Engineering, 2019, 177: 432-441.
[42] Fu W, Wang Z, Sun B, et al. Multiple controlling factors for methane hydrate formation in water-continuous system[J]. International Journal of Heat and Mass Transfer, 2019, 131: 757-771.
[43] Wang J, Wang Z, Sun B, et al. Optimization design of hydraulic parameters for supercritical CO2 fracturing in unconventional gas reservoir[J]. Fuel, 2019, 235: 795-809.
[44] Sun B, Zhang Z, Wang Z, et al. Interfacial friction factor prediction in vertical annular flow based on the interface roughness[J]. Chemical Engineering & Technology, 2018, 41(9): 1833-1841.
[45] Wang M, Wang J, Fang T, Yang Y, Wang Z, et al. Shape Transition of Water-in-CO2 Reverse Micelles Controlled by Surfactant Midpiece[J]. Physical Chemistry Chemical Physics, 2018, 20(22): 15535-15542.
[46] Sun B, Wang J, Wang Z, et al. Calculation of proppant-carrying flow in supercritical carbon dioxide fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2018, 166: 420-432.
[47] Sun X, Wang Z, Sun B, et al. Research on hydrate formation rules in the formations for liquid CO2 fracturing[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1390-1401.
[48] Wang N, Sun B, Wang Z, et al. Numerical simulation of two phase flow in wellbores by means of drift flux model and pressure based method[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 811-823.
[49] Chenwei Liu, Zhiyuan Wang, Jinlin Tian, et al. (2020). Fundamental investigation of the adhesion strength between cyclopentane hydrate deposition and solid surface materials. Chemical Engineering Science, 217, 115524.
[50] Lou, W., Wang, Z., Pan, S., Sun, B., Zhang, J., & Chen, W. (2020). Prediction model and energy dissipation analysis of Taylor bubble rise velocity in yield stress fluid. Chemical Engineering Journal, 125261.
[51] Jianbo Zhang,Zhiyuan Wang,Wenguang Duan,et al. (2020). Real-Time Estimation and Management of Hydrate Plugging Risk During Deepwater Gas Well Testing. SPE Journal,
[52] Fu, W., Wang, Z., Chen, L., & Sun, B. (2020). Experimental Investigation of Methane Hydrate Formation in the Carboxmethylcellulose (CMC) Aqueous Solution. SPE Journal.
[53] Fu, W., Wang, Z., Sun, B., Xu, J., Chen, L., & Wang, X. (2020). Rheological Properties of Methane Hydrate Slurry in the Presence of Xanthan Gum. SPE Journal.
[54] Fu, W., Wang, Z., Zhang, J., & Sun, B. (2020). Methane hydrate formation in a water-continuous vertical flow loop with xanthan gum. Fuel, 265, 116963.
[55] Zhang Z, Wang Z, Gao Y, et al. Experimental study on the effect of surfactants on the characteristics of gas carrying liquid in vertical churn and annular flows[J]. Journal of Petroleum Science and Engineering, 2019, 180: 347-356.
[56] Zhang Z, Wang Z, Liu H, et al. Experimental study on entrained droplets in vertical two-phase churn and annular flows[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1346-1358.
[57] Zhang Z, Wang Z, Liu H, et al. Experimental study on bubble and droplet entrainment in vertical churn and annular flows and their relationship[J]. Chemical Engineering Science, 2019, 206: 387-400.
[58] Zhang S, Wang Z, Sun B, et al. Pattern transition of a gas–liquid flow with zero liquid superficial velocity in a vertical tube[J]. International Journal of Multiphase Flow, 2019, 118: 270-282.
[59] Sun X, Wang Z, Liao Y, et al. Geothermal energy production utilizing a U-shaped well in combination with supercritical CO2 circulation[J]. Applied Thermal Engineering, 2019, 151: 523-535.
[60] Fu W, Wang Z, Sun B, et al. A mass transfer model for hydrate formation in bubbly flow considering bubble-bubble interactions and bubble-hydrate particle interactions[J]. International Journal of Heat and Mass Transfer, 2018, 127: 611-621.
[61] Sun X, Wang Z, Sun B, et al. Modeling of dynamic hydrate shell growth on bubble surface considering multiple factor interactions[J]. Chemical Engineering Journal, 2018, 331: 221-233.
[62] Wang X, Wang Z, Deng X, et al. Coupled thermal model of wellbore and permafrost in Arctic regions[J]. Applied Thermal Engineering, 2017, 123: 1291-1299.
[63] Wang J, Wang Z, Sun B. Improved equation of CO2 Joule–Thomson coefficient[J]. Journal of CO2 Utilization, 2017, 19: 296-307.
[64] He, H., Sun, B., Wang, Z., Liu, Y., & Sun, X. (2020). A constitutive model for predicting the solubility of gases in water at high temperature and pressure. Journal of Petroleum Science and Engineering, 107337.
[65] Sun, B., Zhang, Z., Wang, Z., Pan, S., Wang, Z., & Chen, W. (2020). Parameter Prediction Method for Submarine Cuttings Piles in Offshore Drilling. SPE Journal.
[66] Gao Y, Chen Y, Wang Z, et al. Experimental study on heat transfer in hydrate-bearing reservoirs during drilling processes[J]. Ocean Engineering, 2019, 183: 262-269.
[67] Liu Z, Sun B, Wang Z, et al. New Mass-Transfer Model for Predicting Hydrate Film Thickness at the Gas–Liquid Interface under Different Thermodynamics–Hydrodynamics-Saturation Conditions[J]. The Journal of Physical Chemistry C, 2019, 123(34): 20838-20852.
[68] Sun B, Liu Z, Wang Z, et al. Experimental and modeling investigations into hydrate shell growth on suspended bubbles considering pore updating and surface collapse[J]. Chemical Engineering Science, 2019.
[69] Wang X, Sun B, Wang Z, et al. Coupled heat and mass transfer model of gas migration during well cementing through a hydrate layer in deep-water regions[J]. Applied Thermal Engineering, 2019: 114383.
[70] Zhao Y, Liu S, Wang Z, et al. An adaptive pattern recognition method for early diagnosis of drillstring washout based on dynamic hydraulic model[J]. Journal of Natural Gas Science and Engineering, 2019, 70: 102947.
[71] Zhang Z, Sun B, Wang Z, et al. Whole wellbore liquid loading recognition model for gas wells[J]. Journal of Natural Gas Science and Engineering, 2018, 60: 153-163.
[72] Sun X, Sun B, Wang Z, et al. A hydrate shell growth model in bubble flow of water-dominated system considering intrinsic kinetics, mass and heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2018, 117: 940-950.
[73] Sun B, Wang X, Wang Z, et al. Transient temperature calculation method for deep-water cementing based on hydration kinetics model[J]. Applied Thermal Engineering, 2018, 129: 1426-1434.
[74] Sun B, Sun X, Wang Z, et al. Effects of phase transition on gas kick migration in deepwater horizontal drilling[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 710-729.
[75] Wang J, Sun B, Wang Z, et al. Study on filtration patterns of supercritical CO2 fracturing in unconventional natural gas reservoirs[J]. Greenhouse Gases Science & Technology, 2017, 7(6): 1126-1140.
[76] Sun X, Sun B, Wang Z, et al. A new model for hydrodynamics and mass transfer of hydrated bubble rising in deep water[J]. Chemical Engineering Science, 2017, 173: 168-178.
[77] Sun B, Guo Y, Wang Z, et al. Experimental study on the drag coefficient of single bubbles rising in static non-Newtonian fluids in wellbore[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 867-872.
[78] Hou L, Sun B, Wang Z, et al. Experimental study of particle settling in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2015, 100: 121-128.
[79] SUN B, GONG P, WANG Z. Simulation of gas kick with high H2S content in deep well[J]. Journal of Hydrodynamics, Ser. B, 2013, 25(2): 264-273.
[80] Wang, X., Shen, H., Sun, B., Wang, Z., Gao, Y., Li, H., & Pang, X. (2020). Mechanism of gas migration through microstructure of cemented annulus in deep-water environment. Journal of Natural Gas Science and Engineering, 103316.
[81] Yin, B., Zhang, X., Sun, B., Wang, Z., Gong, P., & Huang, M. Evaluation Method for Probability of Blowout after the Failure of Offshore Well Killing. Indian Journal of Geo Marine Sciences, 2020. 49(02):249-259
[82] Wang X, Sun B, Gao Y, et al. Numerical simulation of the stability of hydrate layer during well cementing in deep-water region[J]. Journal of Petroleum Science and Engineering, 2019, 176: 893-905.
[83] Sun B, Fu W, Wang N, et al. Multiphase flow modeling of gas intrusion in oil-based drilling mud[J]. Journal of Petroleum Science and Engineering, 2019, 174: 1142-1151.
[84] Jin-Tang W , Bao-Jiang S , Hao L , et al. Numerical simulation of cementing displacement interface stability of extended reach wells[J]. Journal of Hydrodynamics, 2018, 30(3):420-432.
[85] Gao Y, Chen Y, Zhao X, et al. Risk analysis on the blowout in deepwater drilling when encountering hydrate-bearing reservoir[J]. Ocean Engineering, 2018, 170: 1-5.
[86] Gao Y, Sun X, Zhao T, et al. Study on the migration of gas kicks in undulating sections of horizontal wells[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1161-1167.
[87] Wang X, Sun B, Luo P, et al. Transient temperature and pressure calculation model of a wellbore for dual gradient drilling[J]. Journal of Hydrodynamics, 2018, 30(4): 701-714.
[88] Sun X, Sun B, Zhang S, et al. A new pattern recognition model for gas kick diagnosis in deepwater drilling[J]. Journal of Petroleum Science and Engineering, 2018, 167: 418-425.
[89] Sun X, Sun B, Gao Y, et al. A model of multiphase flow dynamics considering the hydrated bubble behaviors and its application to deepwater kick simulation[J]. Journal of Energy Resources Technology, 2018, 140(8): 082004.
[90] Wang N, Sun B, Gong P, et al. Improved Void Fraction Correlation for Two‐Phase Flow in Large‐Diameter Annuli[J]. Chemical Engineering & Technology, 2017, 40(4): 745-754.
[91] Wang N, Wang J, Sun B, et al. Study of transient responses in the APWD measurements during gas influx[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 522-531.
[92] Sun, X., Xia, A., Sun, B., Liao, Y., Wang, Z., & Gao, Y. (2019). Research on the heat and mass transfer mechanisms for growth of hydrate shell from gas bubbles. The Canadian Journal of Chemical Engineering, 97(6), 1953-1960.
[93] Wang J, Sun B, Li H, et al. Phase state control model of supercritical CO 2 fracturing by temperature control[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1012-1021.
[94] Hou L, Sun B, Geng X, et al. Study of the slippage of particle/supercritical CO2 two-phase flow[J]. The Journal of Supercritical Fluids, 2017, 120: 173-180.
[95] Wang X , Sun B , Liu S , et al. A coupled model of temperature and pressure based on hydration kinetics during well cementing in deep water[J]. Petroleum Exploration and Development, 2020, 47(4):867-876.
[96] Sun B, Guo Y, Sun W, et al. Multiphase flow behavior for acid-gas mixture and drilling fluid flow in vertical wellbore[J]. Journal of Petroleum Science and Engineering, 2018, 165: 388-396.
[97] 王誌遠, 趙陽, 孫寶江,等. 深水氣井測試管柱內天然氣水合物堵塞特征與防治新方法[J]. 天然氣工業, 2018,38(1):71-78.
[98] Wang Z, Wang X, Sun B, et al. Analysis on Wellhead Stability During Drilling Operation in Arctic Permafrost Region[C]//ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017: V008T11A008-V008T11A008.
[99] 王誌遠, 孫寶江, 高永海,等. 水合物藏鑽探中的環空多相流溢流特性研究[J]. 應用基礎與工程科學學報, 2010, 18(1):129-140.
[100] Wang Z Y, Sun B J, Cheng H Q, et al. Prediction of gas hydrate formation region in the wellbore of deepwater drilling[J]. Petroleum Exploration & Development, 2008, 35(6):731-735.
[101] 王誌遠, 孫寶江, 高永海,等. 深水司鑽法壓井模擬計算[J]. 石油學報, 2008, 29(5):786-790.
[102] 王誌遠, 孫寶江. 深水司鑽壓井法安全壓力餘量及循環流量計算[J]. 中國石油大學學報(自然科學版), 2008, 32(3):71-74.
[103] Zhang, J., Wang, Z., Tong, S., Gong, Z., Ma, N., & Sun, B. (2020, July). Hydrate Plugging Prevention in Deep Water Gas Wells. In SPE/AAPG/SEG Unconventional Resources Technology Conference. Unconventional Resources Technology Conference.
[104] Liao, Y., Wang, Z., Pan, D., Sun, B., & Duan, W. (2019, November). Gas Kick Simulation for Offshore Gas-Hydrate Reservoir Drilling. In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers.
[105] Zhang, J., Wang, Z., Duan, W., Fu, W., Tong, S., & Sun, B. (2019, November). Real-Time Estimation and Management of Hydrate Plugging Risk During Deep-Water Gas Well Testing. In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers.
[106] Deng Z, Wang Z, Zhao Y, et al. Flow Assurance during Gas Hydrate Production: Hydrate Regeneration Behavior and Blockage Risk Analysis in Wellbore[C]// Abu Dhabi International Petroleum Exhibition & Conference. 2017.
[107] Zhao Y, Wang Z, Yu J, et al. Hydrate Plug Remediation in Deepwater Well Testing: A Quick Method to Assess the Plugging Position and Severity[C]// Spe Technical Conference and Exhibition. 2017.
[108] Zhao Y, Wang Z, Zhang J, et al. Flow Assurance during Deepwater Gas Well Testing: Addressing Hydrate Associated Problems at Reduced Cost[C]// Offshore Technology Conference. 2017.
[109] Zhao Y, Wang Z, Zhang J, et al. Flow Assurance During Deepwater Gas Well Testing: When and Where Hydrate Blockage Would Occur[C]// Spe Technical Conference and Exhibition. 2016.
[110] 孫寶江, 王誌遠, 公培斌,等. 深水井控的七組分多相流動模型[J]. 石油學報, 2011, 32(6):1042-1049.
[111] Pan, S., Sun, B., Wang, Z., Fu, W., Zhao, Y., Lou, W., & Wang, J. (2019, October). A New Model to Improve the Accuracy of Wellbore Pressure Calculation by Considering Gas Entrapment. In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers.
[112] Fu W, Sun B, Wang Z, et al. Characterizing Methane Hydrate Formation in Horizontal Water-Dominated Bubbly Flow[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers, 2018.
[113] 張振楠, 孫寶江, 王誌遠, 等. 產液氣井泡沫排液起泡能力分析[J]. 石油學報, 2019, 40(01):108-114.
[114] Wang X, Sun B, Wang Z, et al. Transient Thermal Model of Drilling Fluid in Wellbore under the Effect of Permafrost Thaw during Drilling in Arctic Region[C]// SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. 2017.
[115] Sun X, Sun B, Wang Z. Wellbore Dynamics of Kick Evolution Considering Hydrate Phase Transition on Gas Bubbles Surface During Deepwater Drilling[C]// ASME 2017, International Conference on Ocean, Offshore and Arctic Engineering. 2017:V008T11A059.
[116] Zhang Z, Sun B, Wang Z, et al. Liquid Loading in Subsea Production Riser and a New Prediction Model[C]//The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2016.
[117] 孫寶江, 孫小輝, 王誌遠, 等. 超臨界CO2鑽井井筒內流動參數變化規律[J]. 中國石油大學學報: 自然科學版, 2016, 40(3): 88-95.
[118] 柯珂, 管誌川, 王誌遠, 等. 修正設計係數的套管層次與下入深度設計方法[J]. 中國石油大學學報: 自然科學版, 2016, 40(2): 76-82.
[119] 孫小輝, 孫寶江, 王誌遠. 超臨界CO2壓裂裂縫溫度場模型[J]. 石油學報, 2015, 36(12):1586-1592.
[120] Sun B, Xiang C, Wang Z. Influence of Altitudes and Air Humidity to the Minimum Gas InjectionRate in Air Underbalanced Drilling[J]. Open Petroleum Engineering Journal, 2012, 5(1):104-108.
[121] 孫寶江, 宋榮榮, 王誌遠. 高含硫化氫天然氣氣侵時的溢流特性[J]. 中國石油大學學報(自然科學版), 2012, 36(1):73-79.
[122] 馬永乾, 孫寶江, 王誌遠, 等. 垂直上升氣液柱塞流中含氣率分布[J]. 中國石油大學學報(自然科學版), 2010, 34(1):64-69.
[123] 高永海, 孫寶江, 王誌遠, 等. 深水鑽探井筒溫度場的計算與分析[J]. 中國石油大學學報(自然科學版), 2008, 32(2):58-62.
[124] Sun B, Gao Y, Wang Z, et al. Temperature Calculation And Prediction of Gas Hydrates Formed Region In Wellbore In Deepwater Drilling[C]//The Eighteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2008.
[125] Liu, Z., Sun, B., Ke, K., Wang, Z., Li, H., Pan, S., & Xiao, B. (2019, July). Study on the Hydrodynamics of Rising Bubbles Considering Hydrate Phase Transition During the Shut-in Period in Avoiding the Typhoon. In The 29th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
[126] Sun X, Sun B, Gao Y, Wang Z, et al. Transient Fully Coupled Hydrodynamic-Hydrate Model for Deepwater Kick Simulation[C]// Offshore Technology Conference Asia. 2018.
[127] 王寧, 孫寶江, 劉書傑, 王誌遠, 高永海. 井筒內氣體擴散侵入定量計算模型[J]. 石油學報, 2017(09):114-122.
[128] Wang N, Sun B, Gao Y, Wang Z, et al. Footage-Based Hydraulic Optimization of Deepwater Drilling for Maximum Drilling Rate[C]//The Twenty-fifth International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2015.
[129] 馬永乾, 孫寶江, 邵茹, 王誌遠, 等. 注氣法雙梯度鑽井隔水管環空溫度場模擬[J]. 石油學報, 2014, 35(4):779-785.
[130] 高永海, 孫寶江, 趙欣欣, 王誌遠, 等. 水合物鑽探井筒多相流動及井底壓力變化規律[J]. 石油學報, 2012, 33(5):881-886.
[131] 高永海, 孫寶江, 趙欣欣, 王誌遠, 等. 深水鑽井井湧動態模擬[J]. 中國石油大學學報(自然科學版), 2010, 34(6):66-70.
[132] 侯磊, 孫寶江, 蔣廷學, Geng Xueyu, 王誌遠, 等. 支撐劑在超臨界二氧化碳中的跟隨性計算[J]. 石油學報, 2016, 37(8):1061-1068.
[133] 李昊, 孫寶江, 趙欣欣, 路繼臣, 王誌遠, 等. 高壓氣井壓井井筒溫度場預測與影響因素分析[J]. 中國石油大學學報(自然科學版), 2009, 33(6):61-65.
[134] 王金波, 孫寶江, 李昊, 王寧, 王誌遠, 等. 基於隨鑽電阻率響應特征的深水鑽井氣侵早期監測方法[J]. 中國石油大學學報(自然科學版), 2017, 41(06):94-100.
[135] 徐加放, 丁廷稷, 張瑞, 張振越, 顧甜甜, 程遠方, 王誌遠. 水基鑽井液低溫流變性調控用溫敏聚合物研製及性能評價[J]. 石油學報, 2018, 39(05):597-603.
[136] 王誌遠, 於璟, 孟文波, 等.深水氣井測試管柱內天然氣水合物沉積堵塞定量預測[J].中國海上油氣,2018,30(03):122-131.
[137] 王誌遠, 張劍波, 蔣宏偉, 等. 含水合物相變的油氣井多相流動模型及應用研究[J]. 水動力學研究與進展A輯, 2017, 32 (5):584-591.
[138] 王誌遠, 趙陽, 孫寶江, 等. 井筒環霧流傳熱模型及其在深水氣井水合物生成風險分析中的應用[J]. 水動力學研究與進展A輯, 2016, 31(1):20-27.
[139] 王誌遠, 邢廷瑞, 華美瑞, 等. 深水壓井節流管線內的氣體交換效應分析[J]. 石油鑽探技術, 2013, 41(3):19-24.
[140] 王誌遠, 孫寶江, 程海清, 等. 深水井控過程中天然氣水合物生成區域預測[J]. 應用力學學報, 2009, 26(2):224-229.
[141] 謝翠麗,王誌遠. L管氣液兩相內流致振的流固耦合數值模擬[J].石油機械, 2019, 47(04):124-128.
[142] 柯珂, 王誌遠, 周宇陽, 等. 高陡構造易漏地層鑽前裂縫定量描述方法[J]. 斷塊油氣田, 2015, 22(2):263-266.
[143] 柯珂, 王誌遠, 鄭清華, 等. 深水智能完井關鍵設備組合優化模型的建立與應用分析[J]. 中國海上油氣, 2015, 27(1):79-85.
[144] 徐加放, 王誌遠, 高永海, 等. 虛實結合的海洋油氣工程實踐教學平台的構建[J]. 實驗技術與管理, 2015, 32(12):112-115.
[145] 張洪坤, 王誌遠, 李昊, 等. 套管外擠力的數值模擬及影響因素分析[J]. 石油機械, 2014, 42(1):1-5.
[146] 王金波, 王誌遠, 張偉國, 等. 南海深水海域避台風期間井控安全作業周期研究[J]. 石油鑽探技術, 2013, 41(3):51-55.
[147] 孫寶江, 王雪瑞, 王誌遠, 等. 控製壓力固井技術研究進展及展望[J]. 石油鑽探技術, 2019, 47:1-8
[148] 孫小輝, 孫寶江, 王誌遠, 等. 超臨界CO2鑽井井筒水合物形成區域預測[J]. 石油鑽探技術, 2015, 43(6):13-19.
[149] 張振楠, 孫寶江, 王誌遠, 等. 深水氣井測試天然氣水合物生成區域預測及分析[J]. 水動力學研究與進展A輯, 2015, 30(2):167-172.
[150] 王寧, 孫寶江, 王誌遠, 等. 考慮鑽頭進尺影響的深水鑽井水力參數優選[J]. 中國海上油氣, 2015, 27(3):126-132.
[151] 王雪瑞, 孫寶江, 王誌遠, 等. 海上隔水管錘擊作業溜樁預測方法及預防措施[J]. 中國海上油氣, 2015, 27(3):133-137.
[152] 侯磊, 孫寶江, 王誌遠, 等. 超臨界CO2中沉降顆粒氣液雙重規律研究[J]. 水動力學研究與進展A輯, 2015, 30(1):64-69.
[153] 王寧, 孫寶江, 王誌遠. 井筒溫度場解析求解的邊界條件處理方法[J]. 水動力學研究與進展A輯, 2015, 30(3):279-283.
[154] 馬永乾, 邵茹, 王誌遠, 等. 管內攪拌流傳熱模型及實驗研究[J]. 應用力學學報, 2014(4):611-615.
[155] 公培斌, 孫寶江, 王誌遠, 等. 井內噴空工況壓井方法研究[J]. 石油天然氣學報, 2012, 34(1):100-103.
[156] 宋榮榮, 孫寶江, 王誌遠, 等. 控壓鑽井氣侵後井口回壓的影響因素分析[J]. 石油鑽探技術, 2011, 39(4):19-24.
[157] 高永海, 孫寶江, 王誌遠. 深水井湧壓井方法及其適應性分析[J]. 石油鑽探技術, 2011, 39(2):45-49.
[158] 韋紅術, 杜慶傑, 曹波波, 王誌遠, 等. 深水油氣井關井期間井筒含天然氣水合物相變的氣泡上升規律研究[J]. 石油鑽探技術, 2019, 47(02):42-49.
[159] 滕學清, 孫寶江, 張耀明, 王誌遠, 等. 無安全壓力窗口裂縫性地層五步壓回法壓井方法[J]. 石油鑽探技術, 2018, 46(06):20-25.
[160] 張洪坤, 徐爽, 孫寶江, 王誌遠, 等. 基於ANSYS的大尺寸割縫篩管布縫參數設計 [J]. 石油機械, 2015, 43(10):9-12.
[161] 宋榮榮, 孫寶江, 劉曉蘭, 王誌遠. 井筒氣侵後井底壓力變化的計算分析[J]. 斷塊油氣田, 2011, 18(4):486-488.
[162] 徐鵬, 孫寶江, 張晶, 王誌遠. 深水鑽井淺層氣動力壓井排量計算[J]. 中國海上油氣, 2010, 22(1):46-48.
[163] 王金堂, 孫寶江, 李昊, 相恒富, 王誌遠. 大位移水平井鑽井岩屑速度分布模擬分析[J]. 水動力學研究與進展A輯, 2014, 29(6).
[164] 趙景芳, 宋林鬆, 吉飛, 鄧智銘, 張劍波, 王誌遠.天然氣水合物降壓開采儲層出砂數值模擬[J].中國海上油氣,2019,31(02):116-124.