當前位置: 海洋油氣與水合物研究所
王誌遠
作者: 發布者:趙小明 發布時間:2023-12-29 訪問次數:33481

職稱:教授

單位:海洋油氣與水合物研究所

最高學曆/學位:博士研究生

學科:海洋油氣工程學科,石油與天然氣工程

所學專業:油氣井工程

電子郵箱:wangzy1209@126.com

聯係電話:(Office)0532-86981927

地址郵編:山東省青島市經濟技術開發區長江西路66號必威app精裝版客服 海洋油氣工程係B709室,266580

  • 個人主頁
  • 學習與工作經曆
    2019年國家“萬人計劃”科技創新領軍人才
    2017年教育部長江學者獎勵計劃青年學者
    2016年國家優秀青年科學基金獲得者
    2018年山東省泰山學者特聘教授
    2017年孫越崎青年科技獎獲得者
    2018年山東省有突出貢獻的中青年科學家
    2017年山東省青年科技獎獲得者
    2017年山東省傑出青年科學基金獲得者
    --------------------------------------------------------------------------------------
    2000.09-2004.07年 Betway88必威 本科 石油工程;
    2004.09-2009.09年 Betway88必威 博士(碩博連讀) 油氣井工程;
    2009.09-2011.08年 中國石油大學(華東)地球科學與技術學院 博士後 地質資源與地質工程;
    2011.09-2016.09年 Betway88必威 ,副教授,係副主任;
    2014.09-2015.09 美國塔爾薩大學(The University of Tulsa)訪問學者;
    2016.10-2021.06 Betway88必威 教授,所長;
    2021.07-至今 中國石油大學(華東) 重大項目辦公室主任。
  • 研究方向
    油氣井工程、海洋石油工程、多相流理論及應用,天然氣水合物開發:
    (1)複雜條件下的井筒壓力控製
    (2)鑽井水力學
    (3)深水井控理論及應用
    (4)深水井筒溫度壓力場預測技術
    (5)深水測試及水合物防治
    (6)欠平衡及控製壓力鑽井
    (7)超臨界二氧化碳鑽井、壓裂過程中的相態控製
    (8)智能完井優化設計
    (9)海域天然氣水合物開發技術
  • 招生方向
  • 主講課程
    本科生課程:海洋鑽井工程、海洋油氣工程
    研究生課程:深水鑽井工程、海洋油氣工程、深水油氣工程理論與技術進展
  • 學術兼職
    (1)國家重點研發計劃“深海和極地關鍵技術與裝備”專項總體專家組專家
    (2)國家自然科學基金委會評專家
    (3)國際水合物青年論壇主席(連續4屆)
    (4)SPE協會全球鑽井工程獎評委會委員
    (5)SPE協會亞太油氣會議組委會委員
    (6)國家科技部十三五重點研發計劃項目評審專家
    (7)中國石油學會海洋工程工作部常務委員
    (8)石油工程師協會(SPE)會員
    (9)《Journal of Hydrodynamics》、《Geofluid》編委(SCI期刊)
    (10)《Sim. Trans. of SCS 》(SCI期刊)客座主編
    (11)《石油學報》、《天然氣工業》、《中國石油大學學報(自然科學版)》、《水動力學研究與進展》、《中國海上油氣》編委



  • 指導研究生
    博士
    2017級 潘少偉
    2018級 張劍波、婁文強
    2019級 仉誌、張洋洋、童仕坤、豆寧輝
    2020級 劉徽


    碩士
    2014級 趙陽、潘少偉
    2015級 張劍波、鄧智銘、胡偉鵬
    2016級 於璟、鄭凱波、陳遠鵬
    2017級 婁文強、劉徽、陳旺、王澤、劉漢橋、袁凱鵬
    2018級 都凱、郭兵、張超、仉誌、童仕坤
    2019級 弓正剛、郭宇堃、李迎超、範明、馬楠、孔慶文
    2020級 裴繼昊、關立臣、楊賀民、陳剛、劉曉、李鵬飛

  • 承擔科研課題
    承擔省部級以上代表性課題15項
    1.深水複雜鑽井多相流動模擬關鍵技術與監測裝備,山東省重大科技創新工程項目,7500萬元,2022年-2025年,負責人
    2.天然氣水合物鑽采井筒多相流動障礙形成機製與安全控製方法,國家自然科學基金重大項目課題,370萬元,2020年-2024年,負責人
    3.海域天然氣水合物試采工程基礎及關鍵技術,中石油重大科技項目,4291萬元,2019年-2023年,負責人
    4.海域天然氣水合物工程基礎理論研究室平台建設,中石油科技基礎條件平台建設項目,4444萬元,2019年-2021年,負責人
    5.深水氣井測試環霧流條件下天然氣水合物流動障礙形成機製,國家自然科學基金麵上項目,60萬元,2020年-2023年,負責人
    6.油氣井多相流動理論及應用,山東省傑出青年基金項目,60萬元,2017年-2020年,負責人
    7.陵水25區塊開發井井筒流動保障技術研究,中海油外委課題,200.9萬,2020年-2022年,負責人
    8.油氣井多相流動理論及應用,國家優青基金項目,130萬元,2017年-2019年,負責人
    9.極地冰區鑽井防寒工藝技術研究,國家重點研發計劃,130萬元,2016年-2019年,負責人
    10.深水鑽井非穩態多相流動規律與井筒壓力控製方法,國家973項目,755萬元,2015年-2019年,第二負責人
    11.熱流體壓裂天然氣水合物儲層裂縫擴展基礎理論研究,山東省自然科學基金麵上項目,15萬元,2016年-2019年,負責人
    12.智能井完井方式優化技術,國家863課題,240萬元,2013年-2016年,負責人
    13.陵水17-2氣田開發井生產期間流動保障研究,中海油項目,60萬,2017年,負責人
    14.頁岩氣儲層超臨界二氧化碳壓裂裂縫中支撐劑輸送機理研究,國家自然基金青年基金項目,25萬元,12年-15年,負責人
    15.普光氣田高陡構造鑽井漏噴同存環空壓力控製機理研究,山東省自然科學基金項目,3萬元,2011年-2013年,負責人
  • 獲獎情況
    1.《海洋天然氣水合物水平井試采安全提效關鍵技術》,海洋工程科技進步特等獎,中國海洋工程谘詢協會,2023年,1/14
    2.《深水油氣井筒多相變流動理論與調控方法》,海洋工程科技進步一等獎,中國海洋工程谘詢協會,2021年,2/15
    3.《深水氣井測試水合物防治關鍵技術及應用》,發明家協會創業創新一等獎,中國發明協會,2021年,1/5
    4.《海洋鑽井井筒安全壓力設計方法及關鍵技術》,海洋科技進步二等獎,海洋工程谘詢協會,2017年,1/15
    5.《深部複雜壓力體係地層井筒壓力安全控製技術及應用》,中國安全生產協會第一屆安全科技進步二等獎,省部級,2019年,1/7
    6.《多組分多相複雜流動理論及其在油氣井工程中的應用》,國家能源科技進步獎一等獎,2013年,3/15
    7.《複雜鑽井工況下井筒壓力精確控製與工作液關鍵技術》,中國石油和化學工業聯合會科技進步一等獎,省部級,2016年,3/15;
    8.《複雜壓力體係井筒安全高效構建關鍵技術及應用》,山東省科學技術進步二等獎,省部級,2019年3/9
    9.《七組分井筒多相流動計算技術及應用》,山東省科技進步一等獎,省部級,2009年,4/11;
    10.《複雜環境下油氣生產管柱與集輸管道安全保障關鍵技術及應用》,中國石油和化學工業聯合會科技進步一等獎,省部級,2018年,5/15



  • 榮譽稱號
    1.國家“萬人計劃”科技創新領軍人才
    2.教育部長江學者獎勵計劃青年學者
    3.國家優秀青年科學基金獲得者
    4.山東省泰山學者特聘教授
    5.孫越崎青年科技獎獲得者
    6.山東省有突出貢獻的中青年科學家
    7.山東省青年科技獎獲得者
    8.山東省傑出青年科學基金獲得者



  • 著作
    出版專著3部,發表學術論文160餘篇,其中SCI收錄100餘篇
    1.《深水氣井天然氣水合物防治理論與技術研究》,王誌遠、孫寶江、高永海著,科學出版社,2020
    2.《海洋油氣鑽井工程理論與技術》,王誌遠,孫寶江等著,中國石油大學出版社,2022
    3.《Natural Gas Hydrate Management in Deepwater Gas Well》,Zhiyuan Wang • Baojiang Sun •Yonghai Gao,Springer,2020
  • 論文
    [1] Wang, Z., Tong, S., Wang, C., Zhang, J., Fu, W., & Sun, B. (2020). Hydrate deposition prediction model for deep-water gas wells under shut-in conditions. Fuel, 275, 117944.
    [2] Wang, Z., Liu, H., Zhang, Z., Sun, B., Zhang, J., & Lou, W. (2020). Research on the effects of liquid viscosity on droplet size in vertical gas–liquid annular flows. Chemical Engineering Science, 115621.
    [3] Wang Z , Lou W , Sun B , et al. A model for predicting bubble velocity in yield stress fluid at low Reynolds number[J]. Chemical Engineering Science, 2019, 201:325-338.
    [4] Wang Z, Yu J, Zhang J, et al. Improved thermal model considering hydrate formation and deposition in gas-dominated systems with free water[J]. Fuel, 2019, 236: 870-879.
    [5] Wang Z, Zhao Y, Zhang J, et al. Quantitatively Assessing Hydrate-Blockage Development During Deepwater-Gas-Well Testing[J]. SPE Journal, 2018, 23(04): 1,166-1,183.
    [6] Wang Z, Liao Y, Zhang W, et al. Coupled temperature field model of gas-hydrate formation for thermal fluid fracturing[J]. Applied Thermal Engineering, 2018, 133: 160-169.
    [7] Wang Z, Zhao Y, Zhang J, et al. Flow assurance during deepwater gas well testing: Hydrate blockage prediction and prevention[J]. Journal of Petroleum Science and Engineering, 2018, 163: 211-216.
    [8] Wang Z, Zhang J, Sun B, et al. A new hydrate deposition prediction model for gas-dominated systems with free water[J]. Chemical Engineering Science, 2017, 163: 145-154.
    [9] Wang Z, Zhang J, Chen L, et al. Modeling of hydrate layer growth in horizontal gas-dominated pipelines with free water[J]. Journal of Natural Gas Science & Engineering, 2017, 50:364–373.
    [10] Wang Z, Sun B, Sun X. Calculation of temperature in fracture for carbon dioxide fracturing[J]. SPE Journal, 2016, 21(05): 1491-1500.
    [11] Wang Z, Zhao Y, Sun B, et al. Modeling of hydrate blockage in gas-dominated systems[J]. Energy & Fuels, 2016, 30(6): 4653-4666.
    [12] Wang Z, Sun B, Sun X, et al. Phase state variations for supercritical carbon dioxide drilling[J]. Greenhouse Gases: Science and Technology, 2016, 6(1): 83-93.
    [13] Wang Z, Sun B, Yan L. Improved density correlation for supercritical CO2[J]. Chemical Engineering & Technology, 2015, 38(1): 75-84.
    [14] WANG Z, SUN B, WANG X, et al. Prediction of natural gas hydrate formation region in wellbore during deep-water gas well testing[J]. Journal of Hydrodynamics, Ser. B, 2014, 26(4): 568-576.
    [15] Wang Z, Sun B, Wang J, et al. Experimental study on the friction coefficient of supercritical carbon dioxide in pipes[J]. International Journal of Greenhouse Gas Control, 2014, 25(6): 151-161.
    [16] WANG Z, SUN B. Deepwater gas kick simulation with consideration of the gas hydrate phase transition[J]. Journal of Hydrodynamics, Ser. B, 2014, 26(1): 94-103.
    [17] Wang Z, Sun B, Ke K. Pre-Spud Mud Loss Flow Rate in Steeply Folded Structures[J]. Oil & Gas Science & Technology, 2013, 69(7):1269-1281.
    [18] Wang Z, Sun B. Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition[J]. Petroleum Science, 2009, 6(1): 57-63.
    [19] He, H., Sun, B, Wang, Z, Liu, Y., & Sun, X. (2020). A constitutive model for predicting the solubility of gases in water at high temperature and pressure. Journal of Petroleum Science and Engineering, 107337.
    [20] Zhang, J., Wang, Z., Duan, W., Fu, W., Sun, B., Sun, J., & Tong, S. (2020). Real-Time Estimation and Management of Hydrate Plugging Risk During Deepwater Gas Well Testing. SPE Journal.
    [21] Sun, B., Zhang, Z., Wang, Z., Pan, S., Wang, Z., & Chen, W. (2020). Parameter Prediction Method for Submarine Cuttings Piles in Offshore Drilling. SPE Journal.
    [22] Fang, T., Zhang, Y., Yan, Y., Wang, Z., & Zhang, J. (2020). Molecular insight into the oil extraction and transport in CO2 flooding with reservoir depressurization. International Journal of Heat and Mass Transfer, 148, 119051.
    [23] Chenwei Liu, Zhiyuan Wang, Jinlin Tian, et al. (2020). Fundamental investigation of the adhesion strength between cyclopentane hydrate deposition and solid surface materials. Chemical Engineering Science, 217, 115524.
    [24] Deng, X., Pan, S., Zhang, J., Wang, Z., & Jiang, Z. (2020). Numerical investigation on abnormally elevated pressure in laboratory-scale porous media caused by depressurized hydrate dissociation. Fuel, 271, 117679.
    [25] Lou, W., Wang, Z., Pan, S., Sun, B., Zhang, J., & Chen, W. (2020). Prediction model and energy dissipation analysis of Taylor bubble rise velocity in yield stress fluid. Chemical Engineering Journal, 125261.
    [26] Liao, Y., Sun, X., Sun, B., Wang, Z., Zhang, J., & Lou, W. (2020). Wellhead backpressure control strategies and outflow response characteristics for gas kick during managed pressure drilling. Journal of Natural Gas Science and Engineering, 75, 103164.
    [27] Fu, W., Wang, Z., Zhang, J., & Sun, B. (2020). Methane hydrate formation in a water-continuous vertical flow loop with xanthan gum. Fuel, 265, 116963.
    [28] Deng, X., Feng, J., Pan, S., Wang, Z., Zhang, J., & Chen, W. (2020). An improved model for the migration of fluids caused by hydrate dissociation in porous media. Journal of Petroleum Science and Engineering, 106876.
    [29] Sun, B., Pan, S., Zhang, J., Zhao, X., Zhao, Y., & Wang, Z. (2019). A Dynamic Model for Predicting the Geometry of Bubble Entrapped in Yield Stress Fluid. Chemical Engineering Journal, 123569.
    [30] Zhang, L., Wang, Z., Du, K., Xiao, B., & Chen, W. (2019). A new analytical model of wellbore strengthening for fracture network loss of drilling fluid considering fracture roughness. Journal of Natural Gas Science and Engineering, 103093.
    [31] Wang J, Sun B, Chen W, et al. Calculation model of unsteady temperature–pressure fields in wellbores and fractures of supercritical CO2 fracturing[J]. Fuel, 2019, 253: 1168-1183.
    [32] Sun B, Fu W, Wang Z, et al. Characterizing the rheology of methane hydrate slurry in a horizontal water-continuous system[J]. SPE Journal, 2019.
    [33] Sun X, Liao Y, Wang Z, et al. Geothermal exploitation by circulating supercritical CO2 in a closed horizontal wellbore[J]. Fuel, 2019, 254: 115566.
    [34] Fu W, Wang Z, Zhang J, et al. Investigation of rheological properties of methane hydrate slurry with carboxmethylcellulose[J]. Journal of Petroleum Science and Engineering, 2019: 106504.
    [35] Liao Y, Sun X, Sun B, et al. Transient gas–liquid–solid flow model with heat and mass transfer for hydrate reservoir drilling[J]. International Journal of Heat and Mass Transfer, 2019, 141: 476-486.
    [36] Liao Y, Sun X, Sun B, et al. Coupled thermal model for geothermal exploitation via recycling of supercritical CO2 in a fracture–wells system[J]. Applied Thermal Engineering, 2019: 113890. [19] Zhang J, Wang Z, Liu S, et al. Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety[J]. Applied Energy, 2019, 253: 113521.
    [37] Zhang J, Wang Z, Sun B, et al. An integrated prediction model of hydrate blockage formation in deep-water gas wells[J]. International Journal of Heat and Mass Transfer, 2019, 140: 187-202.
    [38] Deng X, Pan S, Wang Z, et al. Application of the Darcy-Stefan model to investigate the thawing subsidence around the wellbore in the permafrost region[J]. Applied Thermal Engineering, 2019, 156: 392-401.
    [39] Fu W, Wang Z, Yue X, et al. Experimental Study of Methane Hydrate Formation in Water-continuous Flow Loop[J]. Energy & Fuels, 2019.
    [40] Fu W, Wang Z, Duan W, et al. Characterizing methane hydrate formation in the non-Newtonian fluid flowing system[J]. Fuel, 2019, 253: 474-487.
    [41] Sun B, Yang C, Wang Z, et al. Methodology for pressure drop of bubbly flow based on energy dissipation[J]. Journal of Petroleum Science and Engineering, 2019, 177: 432-441.
    [42] Fu W, Wang Z, Sun B, et al. Multiple controlling factors for methane hydrate formation in water-continuous system[J]. International Journal of Heat and Mass Transfer, 2019, 131: 757-771.
    [43] Wang J, Wang Z, Sun B, et al. Optimization design of hydraulic parameters for supercritical CO2 fracturing in unconventional gas reservoir[J]. Fuel, 2019, 235: 795-809.
    [44] Sun B, Zhang Z, Wang Z, et al. Interfacial friction factor prediction in vertical annular flow based on the interface roughness[J]. Chemical Engineering & Technology, 2018, 41(9): 1833-1841.
    [45] Wang M, Wang J, Fang T, Yang Y, Wang Z, et al. Shape Transition of Water-in-CO2 Reverse Micelles Controlled by Surfactant Midpiece[J]. Physical Chemistry Chemical Physics, 2018, 20(22): 15535-15542.
    [46] Sun B, Wang J, Wang Z, et al. Calculation of proppant-carrying flow in supercritical carbon dioxide fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2018, 166: 420-432.
    [47] Sun X, Wang Z, Sun B, et al. Research on hydrate formation rules in the formations for liquid CO2 fracturing[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1390-1401.
    [48] Wang N, Sun B, Wang Z, et al. Numerical simulation of two phase flow in wellbores by means of drift flux model and pressure based method[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 811-823.
    [49] Chenwei Liu, Zhiyuan Wang, Jinlin Tian, et al. (2020). Fundamental investigation of the adhesion strength between cyclopentane hydrate deposition and solid surface materials. Chemical Engineering Science, 217, 115524.
    [50] Lou, W., Wang, Z., Pan, S., Sun, B., Zhang, J., & Chen, W. (2020). Prediction model and energy dissipation analysis of Taylor bubble rise velocity in yield stress fluid. Chemical Engineering Journal, 125261.
    [51] Jianbo Zhang,Zhiyuan Wang,Wenguang Duan,et al. (2020). Real-Time Estimation and Management of Hydrate Plugging Risk During Deepwater Gas Well Testing. SPE Journal,
    [52] Fu, W., Wang, Z., Chen, L., & Sun, B. (2020). Experimental Investigation of Methane Hydrate Formation in the Carboxmethylcellulose (CMC) Aqueous Solution. SPE Journal.
    [53] Fu, W., Wang, Z., Sun, B., Xu, J., Chen, L., & Wang, X. (2020). Rheological Properties of Methane Hydrate Slurry in the Presence of Xanthan Gum. SPE Journal.
    [54] Fu, W., Wang, Z., Zhang, J., & Sun, B. (2020). Methane hydrate formation in a water-continuous vertical flow loop with xanthan gum. Fuel, 265, 116963.
    [55] Zhang Z, Wang Z, Gao Y, et al. Experimental study on the effect of surfactants on the characteristics of gas carrying liquid in vertical churn and annular flows[J]. Journal of Petroleum Science and Engineering, 2019, 180: 347-356.
    [56] Zhang Z, Wang Z, Liu H, et al. Experimental study on entrained droplets in vertical two-phase churn and annular flows[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1346-1358.
    [57] Zhang Z, Wang Z, Liu H, et al. Experimental study on bubble and droplet entrainment in vertical churn and annular flows and their relationship[J]. Chemical Engineering Science, 2019, 206: 387-400.
    [58] Zhang S, Wang Z, Sun B, et al. Pattern transition of a gas–liquid flow with zero liquid superficial velocity in a vertical tube[J]. International Journal of Multiphase Flow, 2019, 118: 270-282.
    [59] Sun X, Wang Z, Liao Y, et al. Geothermal energy production utilizing a U-shaped well in combination with supercritical CO2 circulation[J]. Applied Thermal Engineering, 2019, 151: 523-535.
    [60] Fu W, Wang Z, Sun B, et al. A mass transfer model for hydrate formation in bubbly flow considering bubble-bubble interactions and bubble-hydrate particle interactions[J]. International Journal of Heat and Mass Transfer, 2018, 127: 611-621.
    [61] Sun X, Wang Z, Sun B, et al. Modeling of dynamic hydrate shell growth on bubble surface considering multiple factor interactions[J]. Chemical Engineering Journal, 2018, 331: 221-233.
    [62] Wang X, Wang Z, Deng X, et al. Coupled thermal model of wellbore and permafrost in Arctic regions[J]. Applied Thermal Engineering, 2017, 123: 1291-1299.
    [63] Wang J, Wang Z, Sun B. Improved equation of CO2 Joule–Thomson coefficient[J]. Journal of CO2 Utilization, 2017, 19: 296-307.
    [64] He, H., Sun, B., Wang, Z., Liu, Y., & Sun, X. (2020). A constitutive model for predicting the solubility of gases in water at high temperature and pressure. Journal of Petroleum Science and Engineering, 107337.
    [65] Sun, B., Zhang, Z., Wang, Z., Pan, S., Wang, Z., & Chen, W. (2020). Parameter Prediction Method for Submarine Cuttings Piles in Offshore Drilling. SPE Journal.
    [66] Gao Y, Chen Y, Wang Z, et al. Experimental study on heat transfer in hydrate-bearing reservoirs during drilling processes[J]. Ocean Engineering, 2019, 183: 262-269.
    [67] Liu Z, Sun B, Wang Z, et al. New Mass-Transfer Model for Predicting Hydrate Film Thickness at the Gas–Liquid Interface under Different Thermodynamics–Hydrodynamics-Saturation Conditions[J]. The Journal of Physical Chemistry C, 2019, 123(34): 20838-20852.
    [68] Sun B, Liu Z, Wang Z, et al. Experimental and modeling investigations into hydrate shell growth on suspended bubbles considering pore updating and surface collapse[J]. Chemical Engineering Science, 2019.
    [69] Wang X, Sun B, Wang Z, et al. Coupled heat and mass transfer model of gas migration during well cementing through a hydrate layer in deep-water regions[J]. Applied Thermal Engineering, 2019: 114383.
    [70] Zhao Y, Liu S, Wang Z, et al. An adaptive pattern recognition method for early diagnosis of drillstring washout based on dynamic hydraulic model[J]. Journal of Natural Gas Science and Engineering, 2019, 70: 102947.
    [71] Zhang Z, Sun B, Wang Z, et al. Whole wellbore liquid loading recognition model for gas wells[J]. Journal of Natural Gas Science and Engineering, 2018, 60: 153-163.
    [72] Sun X, Sun B, Wang Z, et al. A hydrate shell growth model in bubble flow of water-dominated system considering intrinsic kinetics, mass and heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2018, 117: 940-950.
    [73] Sun B, Wang X, Wang Z, et al. Transient temperature calculation method for deep-water cementing based on hydration kinetics model[J]. Applied Thermal Engineering, 2018, 129: 1426-1434.
    [74] Sun B, Sun X, Wang Z, et al. Effects of phase transition on gas kick migration in deepwater horizontal drilling[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 710-729.
    [75] Wang J, Sun B, Wang Z, et al. Study on filtration patterns of supercritical CO2 fracturing in unconventional natural gas reservoirs[J]. Greenhouse Gases Science & Technology, 2017, 7(6): 1126-1140.
    [76] Sun X, Sun B, Wang Z, et al. A new model for hydrodynamics and mass transfer of hydrated bubble rising in deep water[J]. Chemical Engineering Science, 2017, 173: 168-178.
    [77] Sun B, Guo Y, Wang Z, et al. Experimental study on the drag coefficient of single bubbles rising in static non-Newtonian fluids in wellbore[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 867-872.
    [78] Hou L, Sun B, Wang Z, et al. Experimental study of particle settling in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2015, 100: 121-128.
    [79] SUN B, GONG P, WANG Z. Simulation of gas kick with high H2S content in deep well[J]. Journal of Hydrodynamics, Ser. B, 2013, 25(2): 264-273.
    [80] Wang, X., Shen, H., Sun, B., Wang, Z., Gao, Y., Li, H., & Pang, X. (2020). Mechanism of gas migration through microstructure of cemented annulus in deep-water environment. Journal of Natural Gas Science and Engineering, 103316.
    [81] Yin, B., Zhang, X., Sun, B., Wang, Z., Gong, P., & Huang, M. Evaluation Method for Probability of Blowout after the Failure of Offshore Well Killing. Indian Journal of Geo Marine Sciences, 2020. 49(02):249-259
    [82] Wang X, Sun B, Gao Y, et al. Numerical simulation of the stability of hydrate layer during well cementing in deep-water region[J]. Journal of Petroleum Science and Engineering, 2019, 176: 893-905.
    [83] Sun B, Fu W, Wang N, et al. Multiphase flow modeling of gas intrusion in oil-based drilling mud[J]. Journal of Petroleum Science and Engineering, 2019, 174: 1142-1151.
    [84] Jin-Tang W , Bao-Jiang S , Hao L , et al. Numerical simulation of cementing displacement interface stability of extended reach wells[J]. Journal of Hydrodynamics, 2018, 30(3):420-432.
    [85] Gao Y, Chen Y, Zhao X, et al. Risk analysis on the blowout in deepwater drilling when encountering hydrate-bearing reservoir[J]. Ocean Engineering, 2018, 170: 1-5.
    [86] Gao Y, Sun X, Zhao T, et al. Study on the migration of gas kicks in undulating sections of horizontal wells[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1161-1167.
    [87] Wang X, Sun B, Luo P, et al. Transient temperature and pressure calculation model of a wellbore for dual gradient drilling[J]. Journal of Hydrodynamics, 2018, 30(4): 701-714.
    [88] Sun X, Sun B, Zhang S, et al. A new pattern recognition model for gas kick diagnosis in deepwater drilling[J]. Journal of Petroleum Science and Engineering, 2018, 167: 418-425.
    [89] Sun X, Sun B, Gao Y, et al. A model of multiphase flow dynamics considering the hydrated bubble behaviors and its application to deepwater kick simulation[J]. Journal of Energy Resources Technology, 2018, 140(8): 082004.
    [90] Wang N, Sun B, Gong P, et al. Improved Void Fraction Correlation for Two‐Phase Flow in Large‐Diameter Annuli[J]. Chemical Engineering & Technology, 2017, 40(4): 745-754.
    [91] Wang N, Wang J, Sun B, et al. Study of transient responses in the APWD measurements during gas influx[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 522-531.
    [92] Sun, X., Xia, A., Sun, B., Liao, Y., Wang, Z., & Gao, Y. (2019). Research on the heat and mass transfer mechanisms for growth of hydrate shell from gas bubbles. The Canadian Journal of Chemical Engineering, 97(6), 1953-1960.
    [93] Wang J, Sun B, Li H, et al. Phase state control model of supercritical CO 2 fracturing by temperature control[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1012-1021.
    [94] Hou L, Sun B, Geng X, et al. Study of the slippage of particle/supercritical CO2 two-phase flow[J]. The Journal of Supercritical Fluids, 2017, 120: 173-180.
    [95] Wang X , Sun B , Liu S , et al. A coupled model of temperature and pressure based on hydration kinetics during well cementing in deep water[J]. Petroleum Exploration and Development, 2020, 47(4):867-876.
    [96] Sun B, Guo Y, Sun W, et al. Multiphase flow behavior for acid-gas mixture and drilling fluid flow in vertical wellbore[J]. Journal of Petroleum Science and Engineering, 2018, 165: 388-396.
    [97] 王誌遠, 趙陽, 孫寶江,等. 深水氣井測試管柱內天然氣水合物堵塞特征與防治新方法[J]. 天然氣工業, 2018,38(1):71-78.
    [98] Wang Z, Wang X, Sun B, et al. Analysis on Wellhead Stability During Drilling Operation in Arctic Permafrost Region[C]//ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017: V008T11A008-V008T11A008.
    [99] 王誌遠, 孫寶江, 高永海,等. 水合物藏鑽探中的環空多相流溢流特性研究[J]. 應用基礎與工程科學學報, 2010, 18(1):129-140.
    [100] Wang Z Y, Sun B J, Cheng H Q, et al. Prediction of gas hydrate formation region in the wellbore of deepwater drilling[J]. Petroleum Exploration & Development, 2008, 35(6):731-735.
    [101] 王誌遠, 孫寶江, 高永海,等. 深水司鑽法壓井模擬計算[J]. 石油學報, 2008, 29(5):786-790.
    [102] 王誌遠, 孫寶江. 深水司鑽壓井法安全壓力餘量及循環流量計算[J]. 中國石油大學學報(自然科學版), 2008, 32(3):71-74.
    [103] Zhang, J., Wang, Z., Tong, S., Gong, Z., Ma, N., & Sun, B. (2020, July). Hydrate Plugging Prevention in Deep Water Gas Wells. In SPE/AAPG/SEG Unconventional Resources Technology Conference. Unconventional Resources Technology Conference.
    [104] Liao, Y., Wang, Z., Pan, D., Sun, B., & Duan, W. (2019, November). Gas Kick Simulation for Offshore Gas-Hydrate Reservoir Drilling. In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers.
    [105] Zhang, J., Wang, Z., Duan, W., Fu, W., Tong, S., & Sun, B. (2019, November). Real-Time Estimation and Management of Hydrate Plugging Risk During Deep-Water Gas Well Testing. In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers.
    [106] Deng Z, Wang Z, Zhao Y, et al. Flow Assurance during Gas Hydrate Production: Hydrate Regeneration Behavior and Blockage Risk Analysis in Wellbore[C]// Abu Dhabi International Petroleum Exhibition & Conference. 2017.
    [107] Zhao Y, Wang Z, Yu J, et al. Hydrate Plug Remediation in Deepwater Well Testing: A Quick Method to Assess the Plugging Position and Severity[C]// Spe Technical Conference and Exhibition. 2017.
    [108] Zhao Y, Wang Z, Zhang J, et al. Flow Assurance during Deepwater Gas Well Testing: Addressing Hydrate Associated Problems at Reduced Cost[C]// Offshore Technology Conference. 2017.
    [109] Zhao Y, Wang Z, Zhang J, et al. Flow Assurance During Deepwater Gas Well Testing: When and Where Hydrate Blockage Would Occur[C]// Spe Technical Conference and Exhibition. 2016.
    [110] 孫寶江, 王誌遠, 公培斌,等. 深水井控的七組分多相流動模型[J]. 石油學報, 2011, 32(6):1042-1049.
    [111] Pan, S., Sun, B., Wang, Z., Fu, W., Zhao, Y., Lou, W., & Wang, J. (2019, October). A New Model to Improve the Accuracy of Wellbore Pressure Calculation by Considering Gas Entrapment. In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers.
    [112] Fu W, Sun B, Wang Z, et al. Characterizing Methane Hydrate Formation in Horizontal Water-Dominated Bubbly Flow[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers, 2018.
    [113] 張振楠, 孫寶江, 王誌遠, 等. 產液氣井泡沫排液起泡能力分析[J]. 石油學報, 2019, 40(01):108-114.
    [114] Wang X, Sun B, Wang Z, et al. Transient Thermal Model of Drilling Fluid in Wellbore under the Effect of Permafrost Thaw during Drilling in Arctic Region[C]// SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. 2017.
    [115] Sun X, Sun B, Wang Z. Wellbore Dynamics of Kick Evolution Considering Hydrate Phase Transition on Gas Bubbles Surface During Deepwater Drilling[C]// ASME 2017, International Conference on Ocean, Offshore and Arctic Engineering. 2017:V008T11A059.
    [116] Zhang Z, Sun B, Wang Z, et al. Liquid Loading in Subsea Production Riser and a New Prediction Model[C]//The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2016.
    [117] 孫寶江, 孫小輝, 王誌遠, 等. 超臨界CO2鑽井井筒內流動參數變化規律[J]. 中國石油大學學報: 自然科學版, 2016, 40(3): 88-95.
    [118] 柯珂, 管誌川, 王誌遠, 等. 修正設計係數的套管層次與下入深度設計方法[J]. 中國石油大學學報: 自然科學版, 2016, 40(2): 76-82.
    [119] 孫小輝, 孫寶江, 王誌遠. 超臨界CO2壓裂裂縫溫度場模型[J]. 石油學報, 2015, 36(12):1586-1592.
    [120] Sun B, Xiang C, Wang Z. Influence of Altitudes and Air Humidity to the Minimum Gas InjectionRate in Air Underbalanced Drilling[J]. Open Petroleum Engineering Journal, 2012, 5(1):104-108.
    [121] 孫寶江, 宋榮榮, 王誌遠. 高含硫化氫天然氣氣侵時的溢流特性[J]. 中國石油大學學報(自然科學版), 2012, 36(1):73-79.
    [122] 馬永乾, 孫寶江, 王誌遠, 等. 垂直上升氣液柱塞流中含氣率分布[J]. 中國石油大學學報(自然科學版), 2010, 34(1):64-69.
    [123] 高永海, 孫寶江, 王誌遠, 等. 深水鑽探井筒溫度場的計算與分析[J]. 中國石油大學學報(自然科學版), 2008, 32(2):58-62.
    [124] Sun B, Gao Y, Wang Z, et al. Temperature Calculation And Prediction of Gas Hydrates Formed Region In Wellbore In Deepwater Drilling[C]//The Eighteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2008.
    [125] Liu, Z., Sun, B., Ke, K., Wang, Z., Li, H., Pan, S., & Xiao, B. (2019, July). Study on the Hydrodynamics of Rising Bubbles Considering Hydrate Phase Transition During the Shut-in Period in Avoiding the Typhoon. In The 29th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
    [126] Sun X, Sun B, Gao Y, Wang Z, et al. Transient Fully Coupled Hydrodynamic-Hydrate Model for Deepwater Kick Simulation[C]// Offshore Technology Conference Asia. 2018.
    [127] 王寧, 孫寶江, 劉書傑, 王誌遠, 高永海. 井筒內氣體擴散侵入定量計算模型[J]. 石油學報, 2017(09):114-122.
    [128] Wang N, Sun B, Gao Y, Wang Z, et al. Footage-Based Hydraulic Optimization of Deepwater Drilling for Maximum Drilling Rate[C]//The Twenty-fifth International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2015.
    [129] 馬永乾, 孫寶江, 邵茹, 王誌遠, 等. 注氣法雙梯度鑽井隔水管環空溫度場模擬[J]. 石油學報, 2014, 35(4):779-785.
    [130] 高永海, 孫寶江, 趙欣欣, 王誌遠, 等. 水合物鑽探井筒多相流動及井底壓力變化規律[J]. 石油學報, 2012, 33(5):881-886.
    [131] 高永海, 孫寶江, 趙欣欣, 王誌遠, 等. 深水鑽井井湧動態模擬[J]. 中國石油大學學報(自然科學版), 2010, 34(6):66-70.
    [132] 侯磊, 孫寶江, 蔣廷學, Geng Xueyu, 王誌遠, 等. 支撐劑在超臨界二氧化碳中的跟隨性計算[J]. 石油學報, 2016, 37(8):1061-1068.
    [133] 李昊, 孫寶江, 趙欣欣, 路繼臣, 王誌遠, 等. 高壓氣井壓井井筒溫度場預測與影響因素分析[J]. 中國石油大學學報(自然科學版), 2009, 33(6):61-65.
    [134] 王金波, 孫寶江, 李昊, 王寧, 王誌遠, 等. 基於隨鑽電阻率響應特征的深水鑽井氣侵早期監測方法[J]. 中國石油大學學報(自然科學版), 2017, 41(06):94-100.
    [135] 徐加放, 丁廷稷, 張瑞, 張振越, 顧甜甜, 程遠方, 王誌遠. 水基鑽井液低溫流變性調控用溫敏聚合物研製及性能評價[J]. 石油學報, 2018, 39(05):597-603.
    [136] 王誌遠, 於璟, 孟文波, 等.深水氣井測試管柱內天然氣水合物沉積堵塞定量預測[J].中國海上油氣,2018,30(03):122-131.
    [137] 王誌遠, 張劍波, 蔣宏偉, 等. 含水合物相變的油氣井多相流動模型及應用研究[J]. 水動力學研究與進展A輯, 2017, 32 (5):584-591.
    [138] 王誌遠, 趙陽, 孫寶江, 等. 井筒環霧流傳熱模型及其在深水氣井水合物生成風險分析中的應用[J]. 水動力學研究與進展A輯, 2016, 31(1):20-27.
    [139] 王誌遠, 邢廷瑞, 華美瑞, 等. 深水壓井節流管線內的氣體交換效應分析[J]. 石油鑽探技術, 2013, 41(3):19-24.
    [140] 王誌遠, 孫寶江, 程海清, 等. 深水井控過程中天然氣水合物生成區域預測[J]. 應用力學學報, 2009, 26(2):224-229.
    [141] 謝翠麗,王誌遠. L管氣液兩相內流致振的流固耦合數值模擬[J].石油機械, 2019, 47(04):124-128.
    [142] 柯珂, 王誌遠, 周宇陽, 等. 高陡構造易漏地層鑽前裂縫定量描述方法[J]. 斷塊油氣田, 2015, 22(2):263-266.
    [143] 柯珂, 王誌遠, 鄭清華, 等. 深水智能完井關鍵設備組合優化模型的建立與應用分析[J]. 中國海上油氣, 2015, 27(1):79-85.
    [144] 徐加放, 王誌遠, 高永海, 等. 虛實結合的海洋油氣工程實踐教學平台的構建[J]. 實驗技術與管理, 2015, 32(12):112-115.
    [145] 張洪坤, 王誌遠, 李昊, 等. 套管外擠力的數值模擬及影響因素分析[J]. 石油機械, 2014, 42(1):1-5.
    [146] 王金波, 王誌遠, 張偉國, 等. 南海深水海域避台風期間井控安全作業周期研究[J]. 石油鑽探技術, 2013, 41(3):51-55.
    [147] 孫寶江, 王雪瑞, 王誌遠, 等. 控製壓力固井技術研究進展及展望[J]. 石油鑽探技術, 2019, 47:1-8
    [148] 孫小輝, 孫寶江, 王誌遠, 等. 超臨界CO2鑽井井筒水合物形成區域預測[J]. 石油鑽探技術, 2015, 43(6):13-19.
    [149] 張振楠, 孫寶江, 王誌遠, 等. 深水氣井測試天然氣水合物生成區域預測及分析[J]. 水動力學研究與進展A輯, 2015, 30(2):167-172.
    [150] 王寧, 孫寶江, 王誌遠, 等. 考慮鑽頭進尺影響的深水鑽井水力參數優選[J]. 中國海上油氣, 2015, 27(3):126-132.
    [151] 王雪瑞, 孫寶江, 王誌遠, 等. 海上隔水管錘擊作業溜樁預測方法及預防措施[J]. 中國海上油氣, 2015, 27(3):133-137.
    [152] 侯磊, 孫寶江, 王誌遠, 等. 超臨界CO2中沉降顆粒氣液雙重規律研究[J]. 水動力學研究與進展A輯, 2015, 30(1):64-69.
    [153] 王寧, 孫寶江, 王誌遠. 井筒溫度場解析求解的邊界條件處理方法[J]. 水動力學研究與進展A輯, 2015, 30(3):279-283.
    [154] 馬永乾, 邵茹, 王誌遠, 等. 管內攪拌流傳熱模型及實驗研究[J]. 應用力學學報, 2014(4):611-615.
    [155] 公培斌, 孫寶江, 王誌遠, 等. 井內噴空工況壓井方法研究[J]. 石油天然氣學報, 2012, 34(1):100-103.
    [156] 宋榮榮, 孫寶江, 王誌遠, 等. 控壓鑽井氣侵後井口回壓的影響因素分析[J]. 石油鑽探技術, 2011, 39(4):19-24.
    [157] 高永海, 孫寶江, 王誌遠. 深水井湧壓井方法及其適應性分析[J]. 石油鑽探技術, 2011, 39(2):45-49.
    [158] 韋紅術, 杜慶傑, 曹波波, 王誌遠, 等. 深水油氣井關井期間井筒含天然氣水合物相變的氣泡上升規律研究[J]. 石油鑽探技術, 2019, 47(02):42-49.
    [159] 滕學清, 孫寶江, 張耀明, 王誌遠, 等. 無安全壓力窗口裂縫性地層五步壓回法壓井方法[J]. 石油鑽探技術, 2018, 46(06):20-25.
    [160] 張洪坤, 徐爽, 孫寶江, 王誌遠, 等. 基於ANSYS的大尺寸割縫篩管布縫參數設計 [J]. 石油機械, 2015, 43(10):9-12.
    [161] 宋榮榮, 孫寶江, 劉曉蘭, 王誌遠. 井筒氣侵後井底壓力變化的計算分析[J]. 斷塊油氣田, 2011, 18(4):486-488.
    [162] 徐鵬, 孫寶江, 張晶, 王誌遠. 深水鑽井淺層氣動力壓井排量計算[J]. 中國海上油氣, 2010, 22(1):46-48.
    [163] 王金堂, 孫寶江, 李昊, 相恒富, 王誌遠. 大位移水平井鑽井岩屑速度分布模擬分析[J]. 水動力學研究與進展A輯, 2014, 29(6).
    [164] 趙景芳, 宋林鬆, 吉飛, 鄧智銘, 張劍波, 王誌遠.天然氣水合物降壓開采儲層出砂數值模擬[J].中國海上油氣,2019,31(02):116-124.
  • 專利
    發明專利
    1.Anti-settling Apparatus and Method and Apparatus for Checking the Same, and Apparatus for Preventing Settlement of Well,2019.06.13,US20190178046A1,1/6
    2.Control method and control device for drilling operations,2019.07.02,US10337267B1,1/5
    3.Homocentric squares-shaped well structure for marine hydrate reserve recovery utilizing geothermal heat and method thereof,2019.04.23,US10267129B1,2/6
    4.Well killing method and device for a fractured formation without safety pressure window by five-step bullheading,2019.09.10,US10408014B1,4/7
    5.防沉係統、校核方法、校核係統及防止目標井沉降的係統,2020.08.14,CN111535769A,1/7;
    6.用於鑽井作業的控製方法及控製裝置,2020.2.21,CN108643887B,1/5
    7.測量深水氣井環空測試液保溫性能的裝置及方法,20190517,CN109765265A,1/6
    8.模擬凍土地帶鑽井的裝置,2019.05.21,CN108104716A,1/6
    9.防沉裝置及其校核方法和裝置、防止井沉降的裝置,2019.10.18,CN108131110A,1/6
    10.極地鑽井平台井架保溫加熱實驗裝置及實驗方法,2019-10-15,CN110331945A,1/6
    11.極地鑽井平台井架保溫裝置及其設計方法,2019-10-15,CN110331946A,1/6
    12.天然氣水合物開采過程中除砂除水裝置及方法,2019.04.05,CN106869902B,1/6
    13.利用底層產氣清除水合物井中出砂出水的裝置及方法,2019.06.14,CN106869871A,1/6
    14.深水氣井生產管路水合物堵塞早期監測裝置及方法,2018.04.06,CN106322121A,1/6
    15.深水氣井測試中天然氣水合物堵塞監測裝置及方法,2018.02.27,CN106194165A,1/8
    16.井下節流閥、深水氣井測試係統及測試方法,2016.08.17,CN104343416B,1/8
    17.抑製酸性氣體突發膨脹的井口回壓確定方法,2015.05.27,CN103233719B,1/7
    18.深水氣井測試用水合物自動防治裝置與防治方法,2015.05.27,CN104088623B,1/5
    19.熱流體壓裂開采天然氣水合物藏實驗裝置,2015.04.15,CN103206210B,1/4
    20.一種確定深水隔水管氣舉鑽井注氣量的方法,2014.12.03,CN103122756B,1/2
    21.熱流體壓裂開采天然氣水合物裝置及方法,2014.07.23,CN103206199B,1/4
    21.增加避台風期間海洋鑽井安全作業周期的方法,2014.05.07,CN103195394B,1/6
    22.鑽前預測高陡構造地層漏失速率的方法,2014.03.19,CN103015996B,1/3
    23.測量超臨界二氧化碳壓裂裂縫中流型分布的裝置,2019-06-07,CN106556506B,2/7
    24.用於施加井口回壓的雙節流控製泥漿泵分流管彙及其方法,2014.02.19,CN102828712B,2/6
    25.基於鑽井環空井筒多相流動計算的空壓鑽井方法,2013.08.28,CN102943620B,2/7
    26.力學特性檢測裝置以及力檢測係統,2019-10-18,CN110346285A,3/4
    27.利用地熱開采海洋水合物藏的回型井結構及方法,2019-08-13,CN108678724B,3/7
    28.救援井壓井模擬實驗裝置及方法,2018-06-29,CN108222926A,3/5
    29.測量單元、溢流信息識別設備及方法,2017-02-15,CN106401571A,3/4
    30.深水雙梯度鑽井用海底井口壓力指示及自動調節裝置,2015-09-09,CN104895548A,3/7
    31.測量超臨界二氧化碳壓裂液流變性的裝置及方法,2014-10-15,CN104101559A,3/6
    32.井噴無法關井情況下的地層壓力確定方法,2014.06.25,CN103244108B,3/7
    33.一種控壓鑽井實驗裝置及其控製方法,2014-05-07,CN103775049A,3/8
    34.超臨界二氧化碳攜砂流動機理研究裝置,2013.03.06,CN102704922B,3/6
    35.用於超臨界二氧化碳定壓比熱測量的實驗裝置與方法,2013-12-11,CN103439356A,3/6
    36.用於無安全壓力窗口裂縫性地層壓井的五步壓回法及設備,2019-04-16,CN109630047A,4/7
    37.超臨界二氧化碳鑽井井筒內相態的控製裝置,2013.04.10,CN102606069B,4/6
    38.利用壓裂開采海洋水合物藏的雙L井結構及方法,2020.06.05,CN108868736B,4/7
    39.一種井底應力誘導卸荷鑽頭及其提高鑽井速度方法,2020.09.01,CN111608589A,4/8
    40.控壓鑽井係統及其控製方法,2019-11-29,CN110513063A,4/5
    41.測量不同粘度下超臨界二氧化碳壓裂液節流係數的裝置,2016-02-24,CN105353084A,4/6
    42.海水淡化的方法,2020.06.26,CN111333238A,5/6
    43.用於開采海洋水合物的雙連通井結構及方法,2020-05-15,CN108915643B,5/6
    44.組合物及傳熱介質的製備方法以及水合物相變製冷方法和水合物相變製冷係統,2020-04-28,CN109266312B,5/6
    45.碳纖維抽油杆和鋼製抽油杆連接接頭及其安裝方法,2019-09-13,CN108286415B,5/8
    46.一種天然氣水合物的開采方法,2013.04.10,CN102704902B,5/8
    47.一種用於提高水合物藏采收率的儲層改造裝置與方法,2020.06.16,CN111287708A,6/8
    48.一種提高熱障塗層耐熱腐蝕性能的激光表麵處理方法,2019-12-31,CN108220953B,6/8
    49.隨鑽測井值響應規律模擬實驗裝置,2013.03.06,CN102606136B,6/8
    50.泡狀流下氣體水合物阻塞機理模擬實驗裝置及方法,2019-08-30,CN106908446B,7/7


    軟件版權:
    1.深水氣井測試水合物防治軟件係統1.0
    2.深水鑽井水力參數優化設計係統1.0
    3.海洋鑽井井控水力參數設計軟件係統1.0
    4.深水鑽井井控過程模擬及設計軟件 V2.0
    5.三高氣井壓井工藝參數計算軟件係統
    6.三高氣井井筒壓力預測軟件V1.0
    7.控製壓力鑽井多相流動參數計算及回壓控製軟件係統V1.0
    8.欠平衡鑽井水力計算軟件係統5.6
    9.環空充氣欠平衡鑽井水力計算軟件係統5.5
    10.柱塞氣舉動力學仿真軟件V1.0
    11.深水智能完井優化設計軟件v1.0

  • 學術交流
  • 個人風采