◎學習與工作經曆 2007.9-2011.7,中國石油大學(華東),石油工程學士; 2011.9-2013.7,中國石油大學(華東),油氣田開發工程碩士; 2013.9-2017.12,中國石油大學(華東),油氣田開發工程博士; 2015.9-2016.9,Pennsylvania State University,博士聯合培養; 2018.8-2021.8,中國石油大學(華東),力學博士後流動站師資博士後; 2021年8月至今,中國石油大學(華東),特任副教授
◎研究方向 (1)油藏數值模擬與開發優化技術 (2)非常規油氣開發 (3)機器學習/人工智能
◎學術兼職 Fuel、International Journal of Coal Geology、Journal of Natural Gas Science and Engineering、Journal of Cleaner Production、Transport in Porous Media、Energy Fuel等國內外頂級期刊審稿人
◎指導研究生 協助指導博士、碩士研究生7名。 博士研究生:馬瑞帥 碩士研究生:王佳茗、吳寬寬、謝澤豪、杜鵬、張斌、楊金朝
◎承擔科研課題 承擔國家自然科學基金、國家科技重大專項、國家973等縱向課題和油田委托課題30餘項,代表性課題包括: 一、非常規油氣開發方向 1.基於PFM-CFD方法的深部煤層流固互饋作用機理研究,國家自然基金青年基金(主持,在研) 2.基於微觀網絡模擬的煤岩裂隙流動參數動態變化規律,中國博士後基金麵上項目(主持,結題) 3.深部煤層氣水賦存及運移產出規律研究,中央高校自主創新基金(主持,在研) 4.基於微觀網絡模擬的煤岩孔滲動態演化規律研究,中央高校自主創新基金(主持,結題) 5.煤岩孔滲動態變化及氣水流動規律實驗,中石油勘探開發研究院橫向課題(主持,結題) 6.煤岩滲流特征模擬等實驗,中石油勘探開發研究院橫向課題(主持,結題) 7.二氧化碳強化頁岩氣開采流固耦合作用機理及數值模擬,國家自然基金麵上項目(第二負責人,在研) 8.頁岩油流動機理與開發優化的基礎理論研究,國家自然科學基金聯合基金重點項目(骨幹,在研) 9.煤儲層氣水兩相受限賦存輸運規律及數值模擬研究,國家自然科學基金麵上項目(骨幹,在研) 10.煤層氣藏數值模擬技術及軟件開發,國家科技重大專項(骨幹,結題) 11.煤儲層氣水賦存、產出動力機製及排采控製數學模型建立,華北油田課題(技術負責人,在研) 二、油氣開發人工智能方向 1.深層碎屑岩油藏注氣優化評價技術研究,中石油重大科技項目(任務負責人,在研) 2.縫洞型碳酸鹽岩油藏氮氣吞吐注氣參數優化與效果預測,山東瑞恒興域石油技術公司(主持,在研) 3.老油田高效井位優選及樣本正演模塊測試,中石化勝利油田橫向課題(主持,在研) 4.整裝油田典型單元流場轉換技術應用及跟蹤分析,中石化勝利油田橫向課題(主持,結題) 5.基於機器學習的複雜斷塊油藏剩餘油預測方法,勝利油田橫向課題(骨幹,在研)
◎獲獎情況 1.2018年山東省優秀博士學位論文 2.2019年必威app精裝版客服 貢獻獎 3.2012、2014、2015年度研究生國家獎學金
◎論文 共發表學術論文20餘篇,其中以第一作者或通訊作者發表SCI/EI論文14篇,代表作包括(*為通訊作者): (1)非常規油氣開發方向 [1]J. Zhang, Q. Feng*, et al., 2020.A two-stage step-wise framework for fast optimization of well placement in coalbed methane reservoirs. International Journal of Coal Geology, 225, 103479. SCI一區TOP [2]Q. Feng, J. Zhang*, et al., 2014. The use of alternating conditional expectation to predict methane sorption capacity on coal. International Journal of Coal Geology, 121, 137–147. SCI一區TOP [3]Q. Feng, J. Zhang*, X. Zhang, et al., 2012. Optimizing well placement in a coalbed methane reservoir using the particle swarm optimization. International Journal of Coal Geology, 104, 34-45.SCI一區TOP [4]J. Zhang, Q. Feng*, X. Zhang, et al., 2020. Multi-fractured horizontal well for improved coalbed methane production in eastern Ordos basin, China: Field observations and numerical simulations. Journal of Petroleum Science and Engineering, 194, 107488. SCI二區TOP [5]J. Zhang, Q. Feng*, et al., X. Zhang, 2015. Relative permeability of coal: A review. Transport in Porous Media, 106(3),563-594. SCI三區 [6]J. Zhang, B. Zhang, S. Xu, et al., 2021. Interpretation of gas/water relative permeability of coal using the hybrid Bayesian-assisted history matching: New insights. Energies, 14(3), 626. SCI三區 [7]Q. Feng, Jiaming Wang, J. Zhang*. Data-driven modeling of the methane adsorption isotherm on coal using supervised learning methods: a comparative study. 2021 International Conference on Modeling, Big Data Analytics and Simulation. EI (2)油氣開發人工智能方向 [1]J. Zhang, Y. Sun, L. Shang*, 2020. A unified intelligent model for estimating the (gas+n-alkane) interfacial tension based on eXtreme gradient boosting (XGBoost) trees. Fuel,282, 118783. SCI一區TOP [2]J. Zhang, Q. Feng*, et al., 2015. The use of an artificial neural network to estimate natural gas/water interfacial tension. Fuel, 157, 28-36.SCI一區TOP [3]Q. Feng, J. Zhang*, et al., 2015. Proximate analysis based prediction of gross calorific value of coals: A comparison of support vector machine, alternating conditional expectation and artificial neural network. Fuel Processing Technology, 129, 120-129.SCI二區TOP [4]J. Zhang, Q. Feng*, X. Zhang, et al., 2016. Estimation of CO2-brine interfacial tension using an artificial neural network. Journal of Supercritical Fluids, 107, 31-37. SCI二區 [5]J. Zhang, Q. Feng*, X. Zhang, et al., 2020. A supervised learning approach for accurate modeling of CO2–brine interfacial tension with application in identifying the optimum sequestration depth in saline aquifers. Energy Fuels, 34(6), 7353–7362. SCI三區 [6]J. Zhang, Q. Feng*, X. Zhang, et al., 2020. A novel data-driven method to estimate methane adsorption isotherm on coals using the gradient boosting decision tree: A case study in the Qinshui Basin, China. Energies, 13, 5369. SCI三區 [7]J. Zhang, Q. Feng*,2020. The use of machine learning methods for estimation of CO2-brine interfacial tension: a comparative study. 2020 International Conference on Machine Learning Technology. EI
◎專利 1.一種煤層損失氣量測定方法、係統、存儲介質、終端,國家發明專利,排名第1 2. 氣體高壓等溫吸附曲線預測方法、係統、存儲介質、終端,國家發明專利,排名第1 3. 地下自生CO2泡沫吞吐開采煤層氣的係統及方法,ZL201610459373.4,排名第4 4. 一種煤層氣井多元熱流體強化開采方法,ZL201310032766.3,排名第3 5. 一種多元熱流體泡沫驅替煤層氣開采方法,ZL201310030969.9,排名第4 6. 飽和水條件下煤岩等溫解吸曲線測定裝置及方法,ZL201410403179.5,排名第3 7. 一種煤頁岩等溫吸附/解吸曲線的測定方法,ZL201310030953.8,排名第3 8. 水驅油藏注采動態調控的逐級劈分優化方法,國家發明專利,排名第4
◎學術交流 1. Advances in the flow principles and production optimization of shale oil. 2018 International Symposium on Unconventional Geomechanics, Qingdao, China. 非常規地質力學大會主題報告 2. Effects of cleat geometry of coal on permeability evolution: a pore-scale network modeling approach, Interpore Annual Conference, 2017, Amsterdam, Netherlands. 3. Flow mechanisms and development technologies of tight oil reservoirs, Unconventional Geomechanics Conference, 2018, Qingdao, China. |